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ABSTRACT

STUDY OF FEATURE SELECTION ALGORITHMS FOR
TEXT-CATEGORIZATION

By
Kandarp Dave
Dr. Kazem Taghva, Examination Committee Chair

Professor of Computer Science
University of Nevada, Las Vegas

This thesis will discuss feature selection algorithms for text-categorization. Fea-
ture selection algorithms are very important, as they can make-or-break a categoriza-
tion engine. The feature selection algorithms that will be discussed in this thesis
are Document Frequency, Information Gain, Chi Squared, Mutual Information, NGL
(Ng-Goh-Low) coefficient, and GSS (Galavotti-Sebastiani-Simi) coefficient. The gen-
eral idea of any feature selection algorithm is to determine importance of words using
some measure that can keep informative words, and remove non-informative words,
which can then help the text-categorization engine categorize a document, D, into
some category, C. These feature selection methods are explained, implemented, and
are provided results for in this thesis. This thesis also discusses how we gathered and

constructed training and testing data, along with the setup and storage techniques

we used.

iii
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CHAPTER 1

INTRODUCTION

With the growth of online information, text-categorization has become a very
important technology to categorize a large number of documents. The idea of text-
categorization, or text-classification, is to categorize textual data into one or more pre-
defined categories [1, 2, 3, 4]. Given a set of documents, D, and some pre-determined
set of categories, C, the idea of text-categorization is to categorize documents, D, into
appropriate categories, C, as best as possible. Text-categorization is a “supervised
technique that uses labeled training data to learn the classification system and then
automatically classifies the remaining text using the learned system” [4].

Feature selection is an important part of text-categorization, and much re-
search has been done on various feature selection algorithms. Feature selection can
be thought of as selecting the best words of a document that can help categorize
that document. As a very simple example, when a human is reading some docu-
ment that contains words such as “iPhone”, “iPad”, “iPod”, or “Mac”, he or she
can easily determine that if a category related to technology named “Apple” exists,
then this document must belong in that category. The idea of feature selection,
in simple words, is to determine importance of words using some measure that can
keep informative words, and remove non-informative words, which can then help the
text-categorization engine.

As adult humans, we have already been trained to put, for example, “iPhone”
related documents in “Apple” (technology related) category, but to train an algo-

rithm to pick up informative words is a different story, and there are many steps to
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this process. First, some categories have to be pre-defined that can be used for both
training and testing. Once the training documents are gathered, and categories are
determined, documents have to be tagged with an appropriate category. In the real
world, a document can belong to multiple categories, but for simplicity, we will tag
a document with only one category. Once the training documents are tagged, a bag
of words, or BOW, can be created, which can be used to categorize test documents.
From the BOW, we can keep informative words, and remove non-informative words,
and the idea of choosing informative words, and removing the rest is called Feature
Selection. The feature selection methods that are studied, implemented, and provided
results for, are the following: Document Frequency, Information Gain, Mutual Infor-
mation, Chi Square, NGL (Ng-Goh-Low) Coefficient, and GSS (Galavotti-Sebastiani-
Simi) Coefficient. These algorithms have been studied before, mainly on Reuters and
Newsgroup input data. We did not use Reuters or Newsgroup data, instead, for our
needs, we built custom (mixed) data ourselves.

Gathering these training and testing documents is a difficult task, but keeping all
the gathered data organized is also difficult. What setup we used to address document
organization issue is discussed in chapter 2. Chapter 2 also gives details about how we
gathered data, how we stored all information, and how appropriate data-structures
were created so that feature selection algorithms can be run easily and efficiently.
Chapter 3 builds the core of this thesis that helps all the feature selection algorithms
mentioned. Chapter 3 talks about how documents are counted, and how the counts
are stored. Chapter 4 explains why feature selection algorithms need to be used, and

gives explanations about each algorithm. Chapter 5 gives implementation details for
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each feature selection algorithm. Chapter 6 shows all the results we achieved. The
thesis is concluded in chapter 7. Before we begin to explain, please note that the

following pairs of words are used interchangeably throughout this thesis:

e “selection” and “document”

e “folder” and “category”
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CHAPTER 2

DATA COLLECTION

2.1 Setup

Choosing a correct setup for text-categorization is an important step, as ex-
plained by Dasgupta, Drineas, Harb, Josifovski, and Mahoney that “challenges asso-
ciated with automated text categorization come from many fronts: one must choose
an appropriate data structure to represent the documents” [5]. There were multiple
factors involved in choosing what environment to use for training data and testing
against the trained model. We chose to use PHP, as it takes care of minute details
of implementation by providing high-level interfaces, and objects such as arrays that
can be associative. It would not have made much difference whether we had used
C++, as most of the calculations had to be done database side. There were parts
where calculation had to be done using an application layer and not the database
layer. Such calculations include calculating Chi Square, Information Gain, Mutual
Information, NGL, and GSS values. Most of these calculations took only about 5
seconds, including retrieving data from storage, calculating values, and updating the
result values back in the storage space.

This brings me to the next part: Storage. For storage, we used a MySQL
database. We chose not to use plain text files due to the amount of data we knew we
had to deal with. MySQL and PHP work very well together as PHP has a built in
connector that can easily access MySQL database. Also, it is much easier to insert,
update, and retrieve thousands of rows of data into and out of MySQL, especially

with transactiongability, and SQL. Another big positive point with using MySQL is
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that we can easily index data, which makes searching of the indexed columns really
fast. MySQL turned out to be the best choice to use than to store data in plain text

files for the provided reasons.

2.2 Categories

Before any data collection could begin, we had to determine what categories we
wanted to work with. We did not want to have categories that were all completely
separate from each other. Categories “Technology” and “Food” are considered very
separate from each other. Categories such as “JavaScript” and “PHP” are considered
very close to each other. Meaning, we wanted have a mix of categories where some
categories would be very close to each other and some other categories that would be

very separate from each other. Here is the list of categories we worked with:

List of Categories - List 1

e Chinese - Food.

e Indian - Food.

e [talian - Food.

e India - General news.

e Apple - Technology news.

e Google - Technology news.

e Facebook - Technology news.
e PHP - Technology.

e JavaScript - Technology.

As can be seen from the list of categories, “Chinese”, “Indian”, and “Italian”
are very close to each other; consider them in group 1. Consider category “India” in
group 2. Categories “Apple”, “Google”, and “Facebook” are related as well; so we

p 3. Categories “PHP”, and “JavaScript” will go in group 4 as
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those categories are related. Now it’s easy to see that group 1, 2, 3, and 4 are all very
separate from each other. Having such a mix of categories helps determine how well
a categorization algorithm is, and how well feature selections methods are. Now that

we have categories, we can collect data.

2.3 Collecting Data

Data was manually gathered from various online sources (websites) with the help
of some utilities, made by us, that could help us gather data faster. 1,010 training
documents and 338 testing documents were manually collected and tagged.

Here is the unique list of subdomain-domain names from which we gathered

training data:

List of Subdomain-Domain Names Used for Training Data - List 2

e rasamalaysia.com

e homechineserecipes.com
e food.com

¢ indianfoodforever.com

e thanksgiving.food.com

e chinese.food.com

e catingchina.com

e allrecipes.com

e manjulaskitchen.com

e sanjeevkapoor.com

e italianfoodforever.com

e timesofindia.feedsportal.com (*)
e zZeenews.com

e feedproxy.google.com (*)

e computerworld.com

e mashable.com
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php.net

w3schools.com

Here is the unique list of subdomain-domain names from which we gathered

testing data:

List of Subdomain-Domain Names Used for Testing Data - List 3

chinese-food-recipes.net
recipesindian.com
italianfoodsrecipes.com
italianhomerecipes.com
timesofindia.feedsportal.com (*)
zeenews.india.com
feedproxy.google.com (*)
mashable.com

php.net

developer.mozilla.org

Items marked with (*) are not actual webpages, but each serves as a pointer

to some other webpage. Such subdomain-domain names are NOT very descriptive

compared to other non-marked domains. For example, consider a feed URL

http://timesofindia.feedsportal.com/fy/8at2EtYORyNP70tD/story0l.htm

and a non-feed URL

http://www.zeenews.com/news/nation/india-china-to-see-growth-in-
n-energy-sector_732607 .html.

It is very clear that the latter, the non-feed URL, is much more descriptive,

and some information can already be guessed about the content of the page from the
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To gather training data, 1,010 documents were determined that were appropri-
ate enough to be categorized under the categories listed in List 1. First the URL
for each of these these training documents was gathered. Initially, we wrote a utility
program that went through all 1,010 documents, and tried to gather text-content
from them. It was noticed that most documents’ text-content included much unnec-
essary data that would break the text-categorization engine and would not be of any
help to any feature selection algorithm. This data was not used. So, we decided to
manually go through all 1,010 training documents, and gathered text-content from
each document that best represented that document’s category. Below are 3 sample

documents with URL, title, meta-information, and text-content.

Sample document 1 - Category “Google”:

URL: http://mashable.com/2011/09/08/google-acquires-zagat/

Title: Google Acquires Zagat

Meta: Google has placed one of its biggest bets on location to date,
acquiring local reviews giant Zagat.

Text-content:

Google has placed one of its biggest bets on location to date,
acquiring local reviews giant Zagat.

Writing on the companys official blog, Marissa Mayer, Googles vice
president of Local, Maps and Location Services, wrote, Moving forward,
Zagat will be a cornerstone of our local offering delighting people
with their impressive array of reviews, ratings and insights, while
enabling people everywhere to find extraordinary (and ordinary)
experiences around the corner and around the world.

Zagat is far cry from the startups typically mentioned in the location
space. The company was founded 32 years ago and started as a printed
guide to restaurants, with Zagat Ratings becoming an industry standard.

More recently, however, Zagat has reinvented itself on the web and

with mobile apps, bringing it into competition with the likes of Foursquare
and Yelp.
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Location has been a tough nut for Google to crack. The company acquired
early location-based social networking service Dodgeball in 2005, only to
eventually shut it down and see founder Dennis Crowley leave to start
Foursquare. More recent attempts include Latitude, a largely forgotten
Foursquare competitor, and Hotpot, a recommendation engine thats baked
into Google Places. The company also appointed Mayer, one of its most
prominent executives, to lead its location efforts in late 2010.

While we dont have a price tag on the Zagat acquisition yet, its safe to
call the buy one of Googles biggest to date in the content business.
Heres a look at some of Googles largest acquisitions through the years:

Sample document 2 - Category “JavaScript”:

URL: http://www.w3schools.com/js/js_obj_string.asp
Title: JavaScript String object

Meta: No meta attached with this document.

Text-content:

The String object is used to manipulate a stored piece of text.
Try it Yourself - Examples

Return the length of a string
How to return the length of a string.

Style strings
How to style strings.

The toLowerCase() and toUpperCase() methods
How to convert a string to lowercase or uppercase letters.

The match() method
How to search for a specified value within a string.

Replace characters in a string - replace()
How to replace a specified value with another value in a string.

The index0f () method
How to return the position of the first found occurrence of a
specified value in a string.

Complete String Object Reference

For a complete reference of all the properties and methods

www.manaraa.com



that can be used with the String object, go to our complete
String object reference.

The reference contains a brief description and examples of
use for each property and method!

String object
The String object is used to manipulate a stored piece of text.
Examples of use:

The following example uses the length property of the String
object to find the length of a string:

var txt="Hello world!";
document.write(txt.length);
The code above will result in the following output:

12
The following example uses the toUpperCase() method of the
String object to convert a string to uppercase letters:

var txt="Hello world!";
document .write(txt.toUpperCase());
The code above will result in the following output:

HELLO WORLD!

Sample document 3 - Category “Indian” (food):

URL: http://www.manjulaskitchen.com/2008/08/12/malai-kofta/

Title: Malai Kofta | Manjula’s Kitchen | Indian Vegetarian Recipes
| Indian Cooking Videos

Meta: Malai kofta is a delicious and rich main dish for any special
occasion.

Text-content:

Malai kofta is a delicious and rich main dish for any special occasion.
Recipe serves 4 to 6.
Ingredients:

Kofta:

10
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1 cup boiled mash potatoes

1 cup mash paneer

2 tablespoon minced cilantro (hara dhania)
1/2 teaspoon cumin seed (jeera)

1/4 teaspoon salt

1 small finally chopped green chili

For Batter:

2 tablespoon all purpose flour (maida, plain flour)
4 tablespoon water
Also needed:

0il to fry

Gravy:

2 tablespoon o0il

Generous pinch asafetida (hing)

1 teaspoon cumin seed (jeera)

2 medium tomatoes

1 tablespoon shredded ginger (adrak)

1 green chili

1 tablespoon coriander powder (dhania)

1/2 teaspoon turmeric (haldi)

1/4 teaspoon red chili powder

1 teaspoon all purpose flour (maida, plain flour)
1/4 cup cream

1/2 teaspoon salt (adjust to taste)

1/4 teaspoon garam masala

2 tablespoon minced cilantro (hara dhania)
Method

Kofta

Mix all the ingredients together for kofta,

With oiled hands, divide the mixture into 14 to 16 equal parts.
Make them in round balls.

Mix flour with about 4 tablespoons of water and mix well until
batter is smooth.

Heat the oil in a frying pan on medium high heat.

The frying pan should have at least 1 1/2 inch of oil. To check
if the oil is ready, just put one small piece of mix in the oil, it
should come up right away but not change color.

Dip the paneer balls in the batter one at a time and slowly drop
into the frying pan.

Turn them occasionally. Fry koftas until golden-brown all around.
Gravy:

11
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Blend the tomatoes, green chilies and ginger to make a puree. If

you prefer mild take the seeds out of green chili before blending.

Mix cream and flour and keep aside.

Heat the oil in a saucepan. Test the heat by adding one cumin

seed to the oil; if it cracks right away oil is ready.

Add the hing and cumin seeds.

Add the tomato puree, coriander powder, turmeric, red chili powder

and cook for about 4 minutes on medium heat.

Tomato mixture will start leaving the oil and will reduce to about half
in quantity.

Add milk and flour mix, salt and one cup of water and let it cook
covered for 7 to 8 minutes on medium heat.

Add the garam masala, salt and cilantro. Let it cook for another minute.
Add koftas as soon it comes to boil turn off the heat. Note: koftas will
expand to about 11/2 times, if you like more gravy this is the time to
add some more boiled water and adjust salt.

Koftas are very soft they should be added to the gravy when you are
ready to serve, otherwise koftas will break.

Call this text-content SELECTION_DETAIL. Fach webpage also has some other
helpful properties associated with it. Properties such as URL, meta, and title can
also help in categorization of the document. To gather these properties, a JavaScript-
PHP utility program was developed. This utility contained URL for each of the 1,010
documents. The utility would go through each item in the list, visit the webpage,
and bring back meta information, title, and URL of the document, and update the
database with this retrieved information.

The same strategy was used for test data. 338 documents were determined, and
URL for each document was collected. We manually went through 338 documents
to collect text-content, and using the same utility mentioned above, meta informa-
tion, title, and URL were retrieved for each document, and data was updated in the

database.

12
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2.4 Tagging Documents

Tagging of training documents is one of the most important part of text-
categorization, as it will help in training of the text-categorization engine. If done
incorrectly, text-categorization engine will give wrong results. Thus, all documents
that we gathered had to be tagged manually by the experts, Kandarp Dave and Dr.
Taghva. For each of the 1,010 training and 338 test documents, the JavaScript utility
mentioned above also included an array slot for the best possible Category in which

the document should belong. The following is the sample code:

Listing 1: Sample JavaScript URL-Category Array Code

1 var linkArray = new Array(

2 new Array(

3 ’http://allrecipes.com/recipe/indian-chapati-bread/detail.aspx’,
4 727

5 )

6 new Array(

7 ’http://allrecipes.com/recipe/indian-sweet-bread/detail.aspx’,
8 )21

9 )

10 new Array(

11 ’http://allrecipes.com/recipe/naan/detail.aspx’

12 L0270

13 ),

14 new Array(

15 ’http://allrecipes.com/recipe/naan-bread/detail.aspx’,

16 ’270

17 ),

18 new Array(

19 http://www.php.net/manual/en/language.operators.string.php’,
20 7227

21 ),

22 new Array(

23 http://www.php.net/manual/en/language.operators.array.php’,
24 1227

25 ),

26 new Array(

27 ’http://www.php.net/manual/en/language.control-structures.php’,
28 1227

29 ),

30 new Array(

31 ’http://www.php.net/manual/en/control-structures.elseif.php’,
32 1227

13
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34 );

As it can be seen from the sample code, documents of “allrecipes.com” belong
to category “2”, which is the primary key for category “Indian” food in the database.
Documents of “php.net” belong to category “22”, which is the primary key for cate-
gory “PHP” in the database. This is only sample code, but the linkArray contained
1,010 tagged-items for training. All 338 test documents were also manually tagged
the same way to determine if the results of the text-categorization algorithm matched

with what is expected.

2.5 Database Setup

As mentioned, we used a database for storage, specifically a MySQL database.
The name of the schema is “thesis”. In this database, we set up appropriate tables.

These tables, along with column names and their descriptions, are explained in each

section below.

14
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2.5.1 Table “folder”

“folder” table can be thought of as one that contains categories.

The columns are:

e PK_ FOLDER - A primary key column for table “folder”.
e NAME - Name of the category.

PK_FOLDER NAME

2 Indian

4 Chinese

6 ltalian

10 India

16 PHF

17 JavaScript
26 Facebook
27 Google
28 Apple

Figure 1: Table “folder”

15
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2.5.2 Table “selection”

“selection” table is the main table that contains all training documents. A
selection item can be thought of as a document.

The columns are:

e PK_SELECTION - A primary key column for table “selection”.

e URL - The document’s Universal Resource Locator. Text in this column is used

in training of the text-categorization engine.

e TITLE - Title of the webpage. Text in this column is used in training of the

text-categorization engine.

e META - A webpage can have many meta tags. We use the value of content
attribute of the meta tag whose name attribute has the value “description”. For

example,

<meta name="description" content="This text will be extracted
and used for text-categorization." />

Text in this column is used in training of the text-categorization engine.

e SELECTION_DETAIL - This column contains the actual text-content extracted
manually. Each row contains text-content of that document that can best help
the text-categorization engine. Text in this column is used in training of the

text-categorization engine.

16
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PK_S TITLE |META |SELECTION_DETAIL

466 ‘Koodankulam N-project protests un Terming as “unfortunate” the resistance to the co... Mew Delhi: Terming as "unfortunate” the resistance t
467 President appeals to Naxals to shun ' President Pratibha Patil on Tuesday appealed to M... Lakhu: President Pratibha Patil on Tuesday appealed
468 Make public paid-news report: CIC t The Central Information Commission has directed ... New Delhi: The Central Information Commission has
469 “India, China to see growth in N-ene IAEA feels that the “continuous and significant gro... Vienna: Notwithstanding the Fukushima nuclear accii
470 Abe bats for India-Japan-US cooperz Favouring greater interaction between Indian and J... New Delhi: Favouring greater interaction between Inc
471 Cash-for-votes: Hindustani refutes p Cash-for-votes: Sohail Hindustani refutes police ¢ New Delhi: The lawyers of Suhail Hindustani, arrestec
472 MNew bird flu outbreak in India Avian influenza, popularly known as bird flu, has ... New Delhi: Avian influenza, popularly known as bird
473 ‘India, China providing high-guality - India and China provide millions of youths with qu... Singapore: India and China, whose combined popula
474 Pakistani, caught spying in India, jail A Pakistani national caught staying here illegally a... MNew Delhi: A Pakistani national caught staying here i
475 SC to rule Sep 29 on Hasan Ali"s bai SC to rule Sep 29 on Hasan Ali” s bail New Delhi: The Supreme Court Tuesday reserved for
476 Life is not easy, peace is far away: Tz "Peace is far away,” feels Bangladeshi writer Taslim... New Delhi: "Peace is far away," feels controversial Bai
477 India for stepped up global effort ag: Warning that terrorism constitutes the most seriou... New York: Warning that terrorism constitutes the mo
478 68 dead in 6.8 intensity Sikkim earth Union Home Secretary RK Singh said on Tuesday t... MNew Delhi: At least 68 people have died in the earthc
479 India making efforts to save children India making efforts to save children, women: UN New Delhi: Countries around the world, including Inc
480 India to focus on terrorism at UNGA India to focus on terrorism and SC reform at UNG... United Nations: Prime Minister Manmohan Singh's ad
481 Krishna could meet Khar on sideline: External Affairs Minister S M Krishna could meet hi... United Nations: External Affairs Minister S M Krishna
482 Panel for ACD to prevent train misha Taking note of frequent rail mishaps, a parliament... New Delhi: Taking note of frequent rail mishaps, a pi
483 Quake toll 92; 3,000 people rescued Sikkim guake toll mounts to 72, rescue work on Mangan: More than 3,000 people were rescued in qu
484 Black money: SC verdict on recall SIT Supreme Court is expected to deliver its verdict on... New Delhi: The Supreme Court is expected to deliver
485 Ramdev starts Bharat Swabhiman Yal Yoga guru Baba Ramdev will embark on “a 1,00,00... Jhansi: Aiming to "awaken people about corruption a
486 K'taka: Yeddyurappa s bail plea heal K'taka: Yeddyurappa's bail plea hearing today Bangalore: The Karnataka Lokayukta Court will on Tu
507 Apple drubs rivals in satisfaction survey € For the eighth year running, Apple again beat rival... For the eighth year running, Apple again beat rival cc
508 M.Y. copycats ordered to hand over fake | Two stores in Queens, N.Y. have agreed to hand o... Two stores in Queens, N.Y. have agreed to hand ove
509 iPad 3 Isn't Coming Until 2012 [REPORT] The next generation iPad won't hit the market unti... The next generation iPad won't hit the market until z
510 Samsung Plans to Sue Apple As Soon as il Although the next generation of Apple's iPhone ha... Although the next generation of Apple's iPhone hasr
511 iPhone Latest: Two Models, Production De The iPhone 5 is likely to make its debut in the nex... The iPhone 5 is likely to make its debut in the next fi
512 RIM Stock Hammered After Second Quarti RIM stock fell as much as 23% in pre-market tradi... Research in Motion’s troubles continued Friday as its
513 Apple Becomes World's Second Most Valu Apple's brand is worth $39.3 billion, or 33% more ... Apple's brand is worth $39.3 billion, or 33% more th
514 Mobile Ad Metwork InMobi Raises 5200 M InMobi, a maobile ad network, has received $200 m... Mobile ad network InMobi has raised $200 million in
515 WMWare Fusion 4 Brings OS X Lion Suppo The new version of VMWare's virtualization softwa... The new version of VMware's virtualization software
516 iPhone 5: Expect Stronger Demand Than | More people are likely to buy the iPhone 5 than we... Turns out the tech press isn't alone in lusting over t
517 Faster MacBook Pros Could Hit Stores Thi By the end of this month, the Apple MacBook Pro I... The Apple MacBook Pro line of laptops will be equipr
518 Android Makes Big Gains on iOS in Europi Android has been the top smartphone platform in ... Android has been the top smartphone platform in th
519 Samsung Slaps Apple With Patent Lawsuit After numerous patent lawsuits from Apple, Sams_.. The Samsung-Apple patent war is far from over. Afte
520 Give Your iPhone a Glowing Logo With Th A UK company called iPatch has developed a modi... Are you annoyed by that all those MacBooks strut art
521 iPhones Are For Old People, Says HTC Chi “iPhones are not cool anymore,” says HTC's Presid... The iPhone 4 and the iPhone 3GS are the two top-sel
522 Apple Set to Break Record for Mac Sales T The Mac line of PCs saw sales rise 22% in July and ... The breathless anticipation swirling around the upco
523 Go Mono: 3 iPhone Apps For Black & Whit We've tried and tested a handful, and here bring y... While many iPhone photography apps offer a monotc
524 Sprint Cancels Store Leave, Confirms iPho an internal memo from Sprint management sugge... Remember when a company memo telling employee:
525 Sprint to Offer Unlimited Data Plan for the Sprint will offer an unlimited data plan for the iPho... The financially ailing Sprint Nextel may offer consum
526 iPhone Tops U.S. Smartphone Customer 5 Amongst all smartphone manufacturers in the U.S.... Apple leads U.5. smartphone manufacturers in custo

Figure 2: Table “selection”
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2.5.3 Table “selection_folder”

“selection_folder” table is a linking table that links training documents to cate-
gories.

The columns are:

e PK_ SELECTION_FOLDER - A primary key column for table “selection_folder”.

e FOLDER_ID - ID of the folder to which this training document belongs.

o SELECTION_ID - The ID of the document.

PK_SELECTION_FOLDER |FOLDER_ID |SELECTION_ID

67 4 67
68 4 bE
69 4 69
70 4 70
71 4 71
72 4 72
73 4 73
74 4 74
75 4 75
il 4 il
77 2 77
78 2 78
79 2 79
80 2 80
81 2 g1
82 2 82
a3 2 a3
84 2 84

Figure 3: Table “selection_folder”
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2.5.4 Table “selection_test”

“selection_test” is the table that contains all test documents. Again, a selection
item can be thought of as a document.

The columns are:

e PK SELECTION_TEST - A primary key column for table “selection_test”.

e URL - Text in the URL column is used in creating a test Bag of Words table to

test against using the text-categorization engine.

e TITLE - Text in the TITLE is the title of the webpage used in testing data.

This column is also used in creating a test Bag of Words table.

e META - Meta of the webpage, extracted the same way as it is done with training

data, and used in creating a test Bag of Words table.

e SELECTION_DETAIL - Text for this column was extracted from webpages man-

ually for the purpose of testing. This column is used in creating a test Bag of

Words table.
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PK_S TITLE
ndian Recipes !

META

| SELECTION_DETAIL

Mushroom Curry

Indian Cooking Recipe site providing information on h...

Mushroom Lurry

81 Indian Recipes : Mutter Paneer Mas Indian Cooking Recipe site providing information on h... Mutter Paneer Masala
82 Indian Recipes : Navaratna Kurma Indian Cooking Recipe site providing information on h... Navaratna Kurma

83 Indian Recipes : Palak Makkai Malai Indian Cooking Recipe site providing information on h... Palak Makkai Malai
84 Indian Recipes : Palak Subzi Indian Cooking Recipe site providing information on h... Palak Subzi

85 Indian Recipes : Paneer Amritsari  Indian Cooking Recipe site providing information on h... Paneer Amritsari

86 Indian Recipes : Paneer Korma Indian Cooking Recipe site providing information on h... Paneer Korma

87 Indian Recipes : Paneer Makhani Re Indian Cooking Recipe site providing information on h... Paneer Makhani Recipe
88 Indian Recipes : Paneer Masala Indian Cooking Recipe site providing information on h... Paneer Masala

89 Indian Recipes : Paneer Tikki Indian Cooking Recipe site providing information on h...  Paneer Tikki

90 Indian Recipes : Paneer Tomato Pez Indian Cooking Recipe site providing information on h... Paneer Tomato Peas
91 Indian Recipes : Vegetable Curry  Indian Cooking Recipe site providing information on h... Vegetable Curry

92 Indian Recipes : Vegetable Gravy  Indian Cooking Recipe site providing information on h... Vegetable Gravy

93 Indian Recipes : Vegetable Kolhapu Indian Cooking Recipe site providing information on h... Vegetable Kolhapuri
94 Indian Recipes : Vegetable Kurma Indian Cooking Recipe site providing information on h... Vegetable Kurma

95 Spaghetti Pasta With Pesto Sauce Ri Our spaghetti pasta with pesto sauce recipe is great fo...
96 Pasta With Cheese Recipe | How to Three types of cheese are used to make this tasty past...

97 Pasta Fazool Recipe | How to Make Made with fresh Italian sausage and beef, the pasta faz...
98 Pasta With Chicken And Tomatoes | If you want a quick and simple meal, try our pasta with...
99 Pasta With Pesto Recipe | How to M Do you need a great pasta with pesto recipe? Here, you...
100 Fusilli Pasta Carbonara Recipe | Ho Fusilli pasta carbonara is a splendid dish always loved ...
101 Italian Pasta Salad Recipe | How to Italian pasta salad is a healthy and flaversome dish. Fa...

102 Baked Chicken Pasta Recipe | How | Our baked chicken pasta recipe features delectable ing...
103 Sun Dried Tomato Pesto Chicken P: Our sun dried tomato pesto chicken pasta recipe is gre...
104 Tomato Pesto Pasta Recipe | How ti Our tomato pesto pasta recipe is great for all family oc...
105 Baked Pasta With White Mushrooms Vegetables such as green tomatoes, green pepper, and...
106 Spaghetti Pasta With Shrimp Recipe Cooked shrimp make this spaghetti pasta with shrimp ...

Spaghetti Pasta With Pesto Sauce Recipe
Pasta With Cheese Recipe

Pasta Fazool Recipe

Pasta With Chicken And Tomatoes Recipe
Pasta With Pesto Recipe

Fusilli Pasta Carbonara Recipe

Italian Pasta Salad Recipe

Baked Chicken Pasta Recipe

Sun Dried Tomato Pesto Chicken Pasta R...
Tomato Pesto Pasta Recipe

Baked Pasta With White Mushrooms Recipe
Spaghetti Pasta With Shrimp Recipe

=)

107 Farfalle with Spinach Pesto | Italian Farfalle con Pesto di Spinaci This classic Italian dish ca... Farfalle con Pesto di Spinaci
108 Italian Seafood Manicotti Recipe - # Manicotti di frutti di mare An Italian classic recipe for y... Manicotti di frutti di mare
109 Olive Qil and Garlic Sauce - aglio e Olive Qil and Garlic Sauce The key to aglio e olio (garlic... Olive Oil and Carlic Sauce

110
111
112
113
114
11
116
117
118
119
120

Italian Pasta Recipe - Linguine with Linguine con Salsa di Noce This Italian pasta recipe con...
Penne with Mushrooms and Prosci. Penne con Funghi e Prosciutto Sauteed mushrooms, pr...
Bolognese Sauce - Italy's most fam Bolognese Sauce Italy's most famous meat sauce hails f...
Fettucine with Lobster Sauce - A N1 Fettuccine con Aragosta Frozen lobster tails tend to be...
Fettuccine with Artichoke Hearts - Fettuccine con Carciofi The very delicate flavor of artic...

Fusilli with Tomatoes and Olives | I! Fusilli con Pomodoro e Olive The sparkling flavor of to...

Italian Recipes | Easy Italian Recipe: Minestrone Soup A classic Italian vegetable soup packe...
Linguine with Fried Zucchini and Ri Linguine alla Lorenza Make this Sicilian specialty with s...
Fusilli with Four Cheeses Italian Req Fusilli con Quattro Formaggi A northern Italian favorite...
Italian Cod Stew Recipe | ItalianHor Merluzzo in Umido This fabulous Italian seafood recipe...
Italian Sauteed Mushrooms Recipe | Funghi Saltati For this easy Italian vegetable recipe try t...

Linguine con Salsa di Noce
Penne con Funghi e Prosciutto
Bolognese Sauce

Fettuccine con Aragosta
Fettuccine con Carciofi
Fusilli con Pomodoro e Olive
Minestrone Soup

Linguine alla Lorenza

Fusilli con Quattro Formaggi
Merluzzo in Umido

Funghi Saltati

w

Figure 4: Table “selection_test”
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2.5.5 Table “selection_folder_test”

“selection_folder_test” is a linking table that links testing documents to cate-
gories. When the text-categorization algorithm is run, the results from the algorithm
are compared to the documents in this table. This helps determine how many docu-
ments are true positives, false positives, and false negatives.

The columns are:

e PK_ SELECTION_FOLDER_TEST - A primary key column for table “selec-

tion_folder_test”.

e FOLDER_ID - ID of the folder to which this test document belongs.

o SELECTION_ID - The ID of the document.

PK_SELECTION_FOLDER_TEST |FOLDER_ID |SELECTION_ID

124 b 124
125 B 125
126 B 126
127 6 127
128 b 128
129 6 129
130 10 130
131 10 131
132 10 132
133 10 133
134 10 134
135 10 135
136 10 136
137 10 137
138 10 138

Figure 5: Table “selection_folder_test”
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2.5.6 Table “bow”

“bow” is the Bag of Words table. Once each training document is cleaned, and
a word list is created, the word list is also cleaned and words are stemmed. This clean
list of words is put in “bow” table. Here words are not grouped, meaning duplicate
words can appear. This table is very helpful in determining document counts.

The columns are:
e PK_BOW - A primary key column for table “bow”.

e WORD - This column contains a non-unique list of words. Meaning words may

be repeated.

e SELECTION_ID - Document ID for the given word. Meaning, given some word,
w, this column will represent in which document ID that word belongs. If a

word, w, appears in 5 different documents, 5 different rows will be created.

e FOLDER_ID - ID of the folder or category in which this document belongs.
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PK_BOW WORD 'SELECTION_ID FOLDER_ID

528 page 4 4
529 rasamalaysia 4 4
530 sweet 4 4
531 refrash 4 4
532 VErsion 4 4
533 tang 4 4
534 fresh 4 4
535 replic 4 4
536 close 4 4
537 multicour 4 4
538 multicours 4 4
539 chicken 5 4
540 kung 5 4
541 recip 5 4
542 sauc 5 4
543 tablespoon 5 4
544 stir 5 4
545 teaspoon 5 4
546 cook 5 4
547 water 5 4
548 dish 5 4

Figure 6: Table “bow”
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2.5.7 Table “doc_bow_raw”

“doc_bow_raw” contains a raw list of Bag of Words for training documents.
This table will have less or equal amount of rows (data) than the “bow” table. In
this table, words are grouped. Meaning, if the word “rice” appears in more than one
document in category named “Chinese”, then in the “doc_bow_raw” table, “rice” and
“Chinese” pair will appear only once. Column named “A” will represent in how many
documents the word appears in. Columns A, B, C, and D are the most important
columns of this table as from them, required values for feature selection algorithms

are calculated. The columns are:
¢ PK_DOC_BOW_RAW - A primary key column for table “doc_bow_raw”.
e WORD - A list of words gathered from “bow” table, grouped by FOLDER_ID.
e FOLDER_ID - ID of the folder in which the word for this row belongs.
e A - Number of documents in FOLDER_ID, C| containing WORD, w.
e B - Number of documents not in FOLDER_ID, C, containing WORD, w.
e C - Number of documents in FOLDER_ID, C, not containing WORD, w.

e D - Number of documents not in FOLDER_ID, C, not containing WORD, w.

INFORMATION_GAIN - Calculated Information Gain values using the A, B,

C, and D columns.

e CHI_ SQUARE - Calculated Chi Square values using the A, B, C, and D columns.

e MUTUAL_INFORMATION - Calculated Mutual Information values using the
Ae By Coand. D.columns.
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e NGL - Calculated Ng-Goh-Low coefficient values using the A, B, C, and D

columuns.

e GSS - Calculated Galavotti-Sebastiani-Simi coefficient values using the A, B, C,

and D columns.
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PK_D{|WORD  |FOLDER A

|C |D ||rlformat|un gain |CHI SQUARE |mutual information |rlg| |gss

3499 multicoul 4 £ EI i EEE) 23 Y4871/ 3044737358/ 4.8493742  1EbE
400 dous 4 1 0 76 934 0O 12.129870] 3.713353036944 3.482796 934
401 premis 4 1 8 76 934 -10182.69944% 0.1627987+ 0.543428035501 0.403483 326
402 premi 4 1 8 76 934 -10182.69944f 0.1627987« 0.543428035501 0.403483 326
403 multicoul 4 2 0 7o 934 0 23.948717¢ 3.694737358776 4.893742 1863
404 sour 2 9 14 165 845 -10338.26304° B.1557082= 1.183559127175 2.855820 5295
405  sour 4 10 13 7o 934 -10327.63375¢& 37.2395740 2.352240961767 6.102423 8352
406 sweet 2 12 44 165 B45 -10721.14817: 0.9412866¢ 0.290141606219 0.970199 2880
407  sweet 4 14 42 76 934 -10711.15813< 19.860268¢f 1.488286481309 4.456436 09884
408 batter 2 10 10 165 845 -10300.19981(C 15.451963: 1.528928465806 3.930898 6300
409 batter 4 4 16 76 934 -10306.447467 4.1778947: 1.336283387864 2.043989 2520
410 secret 2 1 19 165 845 -10306.93273( 1.8281807; -1.71682794859 -1.35210 -2290
411 secret 4 7 13 76 934 -10300.06769€ 19.594216% 2.090526973462 4.426535 5550
412 bell 2 5 8 165 845 -10225.96882t 4.4766276( 1.192237018247 2.115804 2905
413 bell 4 2 11 76 934 -10227.91462]1 1.1114492% 0.994297640635 1.054252 1032
414 pineappl 2 1 5 165 845 -10148.50330( 0.0004724; 0.020137645571 0.021736 20
415 pineappl 4 2 76 934 -10146.12186% 5.5721757% 2.109774858055 2.360545 1564
416 perrin 4 1 0 7o 934 0 12.129870]1 3.713353036944 3.482796 934
417 winegar 2 15 i3 165  B45 -10625.42055€ 6.8907792% 0.810214576196 2.625029 7230
418 vinegar 4 24 24 76 934 -10589.36456€ 92.212609¢ 2.336283387864 9.002739 20592
419 crispi 2 7] 12 165 845 -10283.58829¢ 3.6196578" 0.977324562032 1.902539 3090
420 crispi 4 8 10 76 934 -10273.00921C 31.563133: 2.417897153418 5.618107 6712
421 deep 2 17 29 165 845 -10599.141397 12.542680¢ 1.036245822633 3.541564 9580
422 deep 4 13 33 76 934 -10595.01234% 23.444391¢f 1.681283908756 4.841940 9634
423 ketchup 2 5 4 165 845 -10177.68959¢ 9.7840789: L.722751734946 3.127951 3565
424 ketchup 4 4 5 76 934 -10176.34155; 16.658880¢ 2.488286481309 4.081529 3356
425 worceste 4 1 0 76 934 0 12.129870]1 3.713353036944 3.482796 934
426 plum 4 1 5 76 934 -10148.11032:% 0.7074764( 1.128390536223 0.841116 554
427 master 2 1 9 165 845 -10194.00273% 0.2889308¢ -0.71682794859 -0.53752 -640
428 master 4 5 5 76 934 -10185.19547¢ 24.197136¢ 2.640289574754 4.919058 4290
429 technigu 4 3 7] 7o 934 -10179.24941C 8.2349043F 2.091396328740 2.869652 2346
430 fail 4 1 24 76 934 -10365.578B81¢ 0.4295203, -0.93050315283 -0.65537 -890
431 juic 2 32 21 165 845 -10652.23207¢ 61.467197¢ 1.630167303619 7.B40101 23575
432 Jjuic 4 7] 47 76 934 -10686.66898° 0.9684755f 0.479629619179 0.984111 2032
433 import 2 4 69 165 845 -10911.99309¢ 5.6828594] -1.61056441752 -2.38387 -8005
434 import 4 2 71 76 934 -10915.39134¢ 2.1750719% -1.49508720010 -1.47481 -3528
435 coat 2 14 30 165  B45 -10579.53057¢ 6.8685191¢ 0.844247103795 2.620785 G6BEO
436 coat 4 11 33 76 934 -105/5.39126]1 16.292824] 1.537196081790 4.036437 7766
437 balanc 4 2 & 76 934 -10169.737667 3.3990452f 1.694737358776 1.843649 1412
438 flour 2 51 58 165 845 -11298.63635: 52.865162: 1.129493092670 7.270843 33525
439  flour 4 13 96 76 934 -11331.55187C 2.3502447¢ 0.436661540036 1.533050 4846

Figure 7: Table “doc_bow_raw”
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2.5.8 Table “doc_bow_raw_test”

“doc_bow _raw_test” contains a raw list of Bag of Words for test documents. In
actual testing, this table would not be created. The only reason for creating this
table is so that we can run multiple tests on testing data easily. Creating a Bag of
Words for 338 documents for each test run would take much more time than creating

the BOW once, and reusing it for all tests. The columns are:

e PK_DOC_.BOW_RAW_TEST - A primary key column for table “doc_bow_raw _test”.

e SELECTION_ID_TEST - ID of the test document in which this word belongs.

e WORD - A cleaned word, which will help in testing of the text-categorization

engine and the feature selection algorithms.
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PK_DOC_BOW_RAW_TEST SELECTION_ID_TEST WORD

203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225

B I T T I R e N ¥ ¥ N T I P

slice
section
Tast
direct
prep
ingredi
cuisin
second
preheat
turn
spici
pork
recip
thsp
stir
sauc
cook
minut
slice
bean
chili
heat
food

Figure 8: Table “doc_bow_raw_test”
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2.6 Creating Bag of Words for Training Dataset - “bow” Table

Creating an initial bag of words list is an important step, as it will help in
determining in how many documents each cleaned word appears. But to do create
the list, we first need to determine what those cleaned words are. The next subsections
explain each step of the process in creating the Bag of Words, or the BOW, to be

inserted in the “bow” table.

2.6.1 The b& Lexer

In this section, we will explain how the b8 lexer creates tokens, or BOW, that
helps in text-categorization. b8 is a Naive Bayesian Spam filter library written by
Tobias Leupold. We downloaded the library, and extracted the lexer file out of it
for our needs. Written in PHP, this lexer helps create tokens from a string of words.
We updated the original lexer by adding stopword removal capability. Stopwords, or
“overly common words”, are not helpful in categorization, as they cannot differentiate
between categories [6]. Words such as the, a, of, is, at, on and many more are con-
sidered stopwords. The stopwords file we used containd 573 stopwords. Forman also
tells us that stopwords are language and domain specific, and he says, “depending
on the classification task, they may run the risk of removing words that are essen-
tial predictors, e.g. the word ‘can’ is discriminating between ‘aluminum’ and ‘glass’
recycling” [6, 7].

Our version of the b8 lexer also uses Porter stemmer. “The Porter stemming
algorithm (or ‘Porter stemmer’) is a process for removing the commoner morphological

and inflexional endings from words in English. Its main use is as part of a term
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normalisation process that is usually done when setting up Information Retrieval
systems” [8]. Stemming of words is an important step in creating useful tokens. To
humans, words “cook”, “cooking”, and “cooked” mean the same action. Using three
different words in text-categorization for the same action can lead to wrong or bad
results. Porter stemming algorithm stems words and makes them all same. Meaning
three different words “cook”, “cooking”, and “cooked” would end up becoming one
word, “cook”. Porter stemming algorithm improves results of text-categorization.
George Forman also says that “the common practice of stemming or lemmatizing -
merging various word forms such as plurals and verb conjugations into one distinct
term - also reduces the number of features to be considered. It is properly, however,
a feature engineering option” [6].

The b8 lexer first receives the stopwords file as a list of stopword tokens. The
lexer has one function that takes in the string to be tokenized, call this string $text.
The lexer begins by modifying all punctuation from $text. Following punctuation

symbols are not removed, but are converted into a space.

Terte#$ Y, e x () -_=+0{TF\NNIN" <0 >/7

The reason for converting punctuation into spaces is so that the lexer would work
as intended. For example, removing punctuation from phrase “MySQL’s awesome”
would make the phrase “MySQLs awesome”. The stemming algorithm may or may
not remove the trailing ‘s’, which would cause problems for the categorization al-
gorithm. Replacing punctuation in the same phrase with a space would make it
“MySQL s awesome”. Letter ‘s’ by itself is a stopword, and would be removed, leav-

ing a descriptive phrase “MySQL awesome”.
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The b8 lexer also receives the document ID, and the category ID at initialization,
so that it can be determined for which document and category $text is being tokenized.
This information is passed to the lexer per document, so that at the end when a
BOW is created in the lexer, it knows what words belong to what document and
what category.

$text is then split using b8’s built in regular expressions.

Listing 2: b8 Regular Expressions

1 public $regexp = array(

2 ’ip’ => 2 /([A-Za-z0-9\_\-\.1+)/’,

3 >raw_split’ => 2/ [\s,\.\/"\: N T<ON=_NINT{\+=\D N\ *\&\"%1+/ ",
4 ’html’ => 7 /(<.+7>) /7,

5 >tagname’ => 7/(.+7)\s/’,

6 ’numbers’ => 2/~ [0-9]1+%/"

7 )

From our example, “MySQL” and “awesome” would be the resulting words
from the lexer. These resulting words will be added to a static BOW array managed
by the b8 lexer itself. The token list, $tokens, which in our example contains words
“MySQL” and “awesome”, is passed to the function AddToBagOfWords. Here is the

code:

Listing 3: AddToBagOfWords Function

private function AddToBagOfWords ( $tokens ) {
$arr = array();
foreach ( $tokens as $token => $tokenCount ) {
$arr[’token’] = $token;
$arr[’folder_id’] = $this->currentCategory;
$arr[’selection_id’] = $this->currentSelectionlID;
array_push ( self::$bagOfWords , $arr );

© 00 N O Ut W NN

The function AddToBagOfWords first creates an array called $arr. Then it

goes through all the tokens in $tokens, and adds the token, the current document ID,
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and the current category ID to $arr. $arr is then pushed to the global static array
$bagOfWords. Note that this approach does not create a unique list of words, but
also note that it does not create duplicates of word-folderID-selectionID. This is how
BOW is created for given $text data.

Explained above is the core functionality of the b8 lexer, and what it does. How

everything is tied together is explained in the next section.

2.6.2 Putting Code Together and Creating BOW

The b8 lexer is a core component that creates the BOW for given $text data.
However, it is the create BOW.php program, referred to as create BOW, that is respon-
sible for bringing data from the database, sending $text to the lexer, and handing
over the finished BOW list to the database-update utility for updating of the “bow”
table in the database.

createBOW’s first responsibility is to retrieve data from the database. Specif-
ically, retrieve tagged documents for the purpose of training. createBOW begins by

running the following query:

Listing 4: Retrieve Documents SQL Query

select s.pk_selection, s.url, s.title, s.meta, s.selection_detail, f.x*
from selection as s, folder as f, selection_folder as sf
where

s.pk_selection=sf.selection_id and

f.pk_folder=sf.folder_id limit 200 offset O

This SQL query retrieves the document 1D, the URL, the title, the meta, and
the text-content of 200 documents at a time from the “selection” table. The same
query also retrieves, for those documents, the category ID in which they belong. The
00 documents at a time is because not all 1,010 documents
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can fit in the memory at one time. Although, the offset can be increased by 200
automatically, since there were only 1,010 documents, we manually ran the query
updating the offset by 200 each iteration. The create BOW then retrieves the list of

stopwords and gives the list to the b8 lexer as shown below:

Listing 5: Retrieving and Setting Stopwords in the b8 Lexer

1 $stopwords = file_get_contents ( ’stopwords’ );

2 $stopwords = explode ( "\r\n" , $stopwords );

3

4 $numStopwords = count ($stopwords);

5 // \b for word-boundary "u" for UTF-8. "i" for insensitive.
6 for ( $i=0 ; $i<$numStopwords ; $i++ ) {

7 $stopwords[$i] = "/\b" . $stopwords[$i] . "\b/ui";

G

9

10 $lexer = new b8_Lexer ();

[
—_

$lexer ->SetStopwords ( $stopwords );

Line 1 gets the contents of the “stopwords” file in the $stopwords string. On
line 2, the ezplode function breaks the $stopwords string into an array specified by
the delimiter string “\r\n”. The for loop prepares each stopword for a regular-
expression in the b8 lexer so that each stop word can be easily removed. In the loop,
each stopword is wrapped by ‘\b’ for word-boundary, and appended with the “ui”
flags for UTF-8 and CASE INSENSITIVE. Lexer is then initialized on line 10, and the
$stopwords are set in line 11.

Once the documents are retrieved and the lexer is initialized, the actual pro-

cessing for tokenizing of the documents can begin. Code is given below. The variable

$selections is a list of documents.

Listing 6: Tokenize Documents using the b8 Lexer

1 foreach ( $selections as $selectionItem ) {
2 $selectionID = $selectionltem[’pk_selection’];
3 $category = $selectionItem[’PK_FOLDER’];
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5 $url = strtolower ($selectionItem[’url’]);

6 $title = strtolower($selectionItem[’title’]);

7 $meta = strtolower($selectionltem[’meta’]);

8 $selectionDetail = strtolower($selectionItem[’selection_detail’]);

9

10 $strToTokenize = $url .’ . $title .’ ’. $meta .’ ’. $selectionDetail;
11 $lexer->SetCategory ( $category );

12 $lexer->SetSelectionID ( $selectionID );

13 $lexer->get_tokens ( $strToTokenize );

14 }

In the code given above, the loop goes through each document item, and stores
the document ID, the category ID, and the URL, the title, the meta information
and the text-content of the document in appropriate variables. Note that the URL,
the title, the meta, and the text-content are all first converted to lower case, so that
the lexer treats words with different cases in a uniform way. These fields are then
concatenated together into one string. Dot (.) is the concatenation operator in PHP.
The reason for making one string is because, I'm considering the URL, the title,
the meta, and the text-content as a document’s joined information. This is a naive
approach, however. Better approach would be to assign each field different weights,
which would then improve categorization dramatically. Next, for each document, the
category ID and the document ID are set in the lexer. Then the get_tokens function
is passed the concatenated string to be tokenized.

The get_tokens tokenizes the string $strToTokenize and creates a BOW for those
tokens given the category ID, and the document ID. Once the loop is done, a BOW in
the lexer is fully created. The createBOW retrieves BOW from the lexer, and inserts
all the tokens in the “bow” table in the database. Code is given below. Notice that
the $tokenList is passed to the InsertBOW, which actually performs inserts to the

table.
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Listing 7: Get Tokens and Call InsertBOW to Save BOW

$tokenlList = $lexer->GetBagOfWords () ;

$bowInsertFacade = new BOWInsertFacade ();
$bowInsertFacade->InsertBOW ( $tokenlList );

N

Below is the InsertBOW function that creates and performs inserts on the

“bow” table.

Listing 8: InsertBOW Function

1 public function InsertBOW ( $bow ) {

2 $num = count ($bow);

3

4 for ( $i=0 ; $i<$num ; $i++ ) {

5 $query =

6 "insert into bow ( word , selection_id , folder_id ) values (
7 " . mysql_real_escape_string($bow[$i][’token’],$this->dbLink) . "7,
8 o $bow[$il[’selection_id’] . "7,

9 >m . $bow[$il[’folder_id’] . "?

10 "

11

12 $result = mysql_query ( $query , $this->dbLink );

13 }

14 }

In the InsertBOW function above, line 2 first counts how many items need to
be inserted. The for-loop then runs through all the items, and builds an insert-query-
string, which is then run using the mysql_query command of PHP. Here are a few

sample queries that were ran:

Listing 9: Sample InsertBOW Queries

insert into bow ( word , selection_id , folder_id )
values ( ’chop’ , 777 , ’2° );

insert into bow ( word , selection_id , folder_id )
values ( ’pepper’ , 777 , ’27 );

insert into bow ( word , selection_id , folder_id )
values ( ’bake’ , 777 , 22’ );

insert into bow ( word , selection_id , folder_id )
values ( ’stir’ , 777 , ’2° );

insert into bow ( word , selection_id , folder_id )
values ( ’photo’ , 26737 , ’26° );

11 insert into bow ( word , selection_id , folder_id )

12 values ( ’network’ , 26737’ , 2267 );

© 00 N O U W N

=
=]
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13
14
15
16
17
18
19
20

insert into
values (
insert into
values (
insert into
values (
insert into
values (

bow ( word
’social’
bow ( word

, selection_id ,

’673°

>

7267 ) ;

, selection_id ,
;22) )’

’cast’ , 772’

bow ( word
’object’
bow ( word
’string’

, selection_id ,

7727

>

220 )

, selection_id ,

7727

>

220 );

folder_id

folder_id

folder_id

folder_id

I have shown only 10 sample queries above. After running all insert queries to

the “bow” table, the “bow” table contained 88,230 rows.

Now the “bow” table is fully created, and has data that can be used. How data

from the “bow” table will be used is briefly explained in the next section.

2.6.3 Importance of the “BOW” Table

The “bow” table is ready to be used. There are two main purposes for using

the “bow” table: reusability, and counting of documents.

1. Reusability - Creating the “bow” table takes a long time. Once the “bow” table

is created, the training documents do not need to be touched again, because the

“bow” table contains all needed information. This saves a lot of time.

2. Counting of documents - For text-categorization, it is important to determine

in how many documents a word appears, or in how many documents the word

does not appear, and more variations explained in detail later. And because the

“bow” table contains ungrouped list of word - document ID - folder ID, counting

of documents can be easily queried right from the “bow” table without touching

the documents again. Again, saving a lot of time.

The “bow” table contains ungrouped list of word - document ID - folder ID.

Nextswehavetocreate a list of words that grouped by word and category ID, and
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insert into a table that we call “doc_bow_raw”. Counts of the documents will be found
in this table as well. The procedure is extremely easy, as we have to run only one

SQL query. This procedure of creating the “doc_bow_raw” table is explained next.

2.7 Creating Bag of Words for Training Dataset - “doc_bow_raw” Table

The “doc_bow_raw” table has the following columns available: word, folder_id,
multiple columns for different types of document counts, and columns available for
values for feature selection algorithms. The “bow” table had ungrouped data, whereas
the “doc_bow_raw” table has grouped data, grouped by word - folder ID. Because
we're using MySQL, we can just run a simple query to insert data from the “bow”
table into the “doc_bow_raw” table. Again, reusability of the “bow” table becomes
very helpful.

To insert into the “doc_bow_raw” table from the “bow” table, we will run the

following simple query.

Listing 10: Query to Insert Into “doc_bow_raw” Table

1 insert into doc_bow_raw ( word , folder_id )
2 select word, folder_id from bow
3 group by word, folder_id

A total of 20,419 records were inserted into the “doc_bow_raw” table from the
“bow” table. Even though inserting data this way is more correct than any other
way, one way would be to check integrity of these insertions is by checking against
another table that we know for fact contained grouped word - folder ID pairs.

This second table we checked against was actually created using PHP-MySQL

using the same way the “bow” table was created. The only difference would be
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to replace the AddToBagOfWords function explained above with the following new

function:

Listing 11: AddToBagOfWords Function

1 private function AddToBagOfWords ( $tokens ) {

2 foreach ( $tokens as $token => $tokenCount ) {

3

4 if ( !isset(self::$bagOfWords[$token]) ) {

5 self::$baglfWords [$token] = array();

6 for ( $i=0 ; $i<$this->numCategories ; $i++ ) {
7 $category = $this->categoryList[$i];

8 self::$bagl0fWords [$token] [$category] = 0;
9 }

10 X

11 }

12 }

Here, the only difference is that, if the word (token) is already set in the $bagOf-
Words global static array, then the word is not added to the list again.
Now we have two different versions of the “doc_bow_raw” table. One using the

query, another using PHP-MySQL. To check correctness, we will run the following

query:

Listing 12: Checking Correctness of the Data in Table “doc_bow_raw” Inserted Using a Query on

the “bow” Table

1 select word, folder_id from doc_bow_raw

2 where ( word , folder_id ) not in

3 (

4 select word , folder_id from doc_bow_raw_PHP
5

)

Running this query returned an empty set, as expected. This means, data
inserted using PHP and data inserted using the query on the “bow” table match

100%. Next, we create the bag of words for the test dataset.
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2.8 Creating Bag of Words for Test Dataset - “doc_bow_raw_test” Table

As mentioned earlier in section 2.3, and 2.4, the test dataset was collected and
tagged the same was as the training dataset. The only difference between the training
and the testing dataset is that the BOW created for them has to go in different tables.
The BOW for the training data needs to go in the “doc_bow_raw” table, and the BOW
for the test data needs to go in the “doc_bow _raw_test” table. There is no difference
in how the lexer builds the BOW for the training and the testing dataset. How the
BOW is created has already been explained, and exactly the same process applies to
the test dataset. How data for the test BOW is inserted is explained here.

The program create DocRawBOW Test is used to create BOW for test data. Here

a call is made to the lexer to get the BOW:

Listing 13: Get BOW from the b8 Lexer

1 $bow = $lexer->GetBagOfWords ();

Then a call to another function is made to insert $bow with a given document
ID. If you recall, in listing 6, we talked about how the selectionID, or the document
ID, is retrieved from a $selectionltem. For each test document, the document ID
is retrieved almost the same way. This $selectionID along with $bow are passed to
the InsertBOWTest function. Note that pk_selection_test is a column in the table

selection_test. Code is given below.

Listing 14: Get Document ID for Test Data

$selectionID = $selectionltem[’pk_selection_test’];

3 $bowTest->InsertBOWTest ( $selectionID , $bow );

Below is the code that will insert word - document ID pairs in the “doc_bow _raw_test”
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table.

Listing 15: InsertBOWTest Function

1 public function InsertBOWTest ( $selectionID , &$bow ) {
2 foreach ( $bow as $word => $nothing ) {

3

4 $word = mysql_real_escape_string ( $word , $this->dbLink );
5

6 $query =

7 "insert into doc_bow_raw_test

8 ( selection_id_test , word )

9 values (

10 > $selectionID . "7,

11 v $word . "7

12 DI

13

14 $result = mysql_query ( $query , $this->dbLink );
15 }

16 }

A total of 26,789 rows were inserted in the doc_bow_raw_test table. Here are a

few sample queries that were ran:

Listing 16: Sample InsertBOWTest Queries

1 insert into doc_bow_raw_test

2 ( selection_id_test , word )
3 values (

4 ’1’> , ’carrot’

5);

6 insert into doc_bow_raw_test

7 ( selection_id_test , word )
8 values (

9 ’1’ , ’potato’

10 )3

11 insert into doc_bow_raw_test

12 ( selection_id_test , word )
13 values (

14 1>, ’stew’

15 )3

16 insert into doc_bow_raw_test

17 ( selection_id_test , word )
18 values (

19 1>, ’tbsp’

20 );

21 insert into doc_bow_raw_test

22 ( selection_id_test , word )

23 values (
24 ’1? , ’cook’
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26 insert into doc_bow_raw_test

27 ( selection_id_test , word )
28 values (

29 ’1> , ’food’

30 )

Now that the training and the testing datasets have been inserted in proper
tables, we can proceed to the counting of the documents. Document counting is the
most crucial process for feature selection algorithms. Now we have to calculate the

A, B, C, D. Calculating these A, B, C, D values is explained in the next section.
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CHAPTER 3

COUNTING DOCUMENTS

Document counting is an important task in feature selection algorithms. Doc-
ument counts can help determine how important or not-important a word token is.
The next few sections explain the A, B, C, D values, what they are, and how they

are calculated.

3.1 The A, B, C, D Values

3.1.1 Explanation of the A, B, C, D Values

The A, B, C, D values have been mentioned many times so far in this thesis,
and they are the most important values in the feature selection algorithms we have

tested. Now, we will describe what each part of A, B, C, D means:
e A - the number of documents in category, C, containing word/token, t.
e B - the number of documents not in category, C, containing word/token, t.
e C - the number of document in category, C; not containing word/token, .
e D - the number of documents not in category, C, not containing word/token, ¢.

[4]

These A, B, C, D values are used in all feature selection algorithms we’ve tested

in one way or another. These A, B, C, D values are stored in the “doc_bow_raw”

table, but the actual calculations happen on the “bow” table. Calculating them is a
ey are calculated is explained next.
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3.1.2 Calculating and Updating “doc_bow_raw” with the A, B, C, D Values

Calculating the A, B, C, D values first requires me to get word - folder 1D
information from the “doc_bow_raw” table. The “doc_bow_raw” table has 20,419
records. Retrieving only 2 columns of 20,419 records works fine, as it can fit in
the memory. Because the actual document count calculations have to be done using
the “bow” table, our initial plan was to retrieve all 88,230 rows of the “bow” table
in PHP, and do the counts on this retrieved data in the memory itself. This way
turned out to be much slower. Another, faster, way was implemented by running the
count queries on the database side. This approach did not need the “bow” table to
be retrieved. Code for the loop that goes thorough each word - category ID, calls

CalculateABCDValues and UpdateABCD Values is given below:

Listing 17: Loop to Calculate and Update A B C D Values

1 foreach ( $resultlList as $key => $details ) {

2 $word = $details[’word’];

3 $folder = $details[’folder’];

4

5 $values = $dbDocBOWRaw->CalculateABCDValues ( $word , $folder );
6

7 $dbDocBOWRaw ->UpdateABCDValues ( $word , $folder , $values );

8

9 }

The loop above goes thorough each word - category ID and calls the Calculate-
ABCDValues function, passing word and category ID. Code for the Calculate ABCD-

Values function is given below:

Listing 18: Calculate ABCDValues Function

public function CalculateABCDValues ( $word , $folderID ) {
$word = mysql_real_escape_string($word,$this->dbLink);
$folderID = mysql_real_escape_string($folderID,$this->dbLink);

=W N =

$query =
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6 "select count(0) as A from (

7 select distinct selection_id

8 from bow

9 where folder_id=’" . $folderID . "’ and word=’" . $word . "’
10 ) as tbl";

11 $row = mysql_fetch_assoc ( mysql_query ( $query , $this->dbLink ) );
12 $A = $rowl[’A’];

13

14 $query =

15 "select count (0) as B from (

16 select distinct selection_id

17 from bow

18 where folder_id<>’" . $folderID . "’ and word=’" . $word . "’
19 ) as tbl";

20 $row = mysql_fetch_assoc ( mysql_query ( $query , $this->dbLink ) );
21 $B = $rowl[’B’];

22

23 $query =

24 "select count (0) as C from (

25 select distinct selection_id

26 from bow

27 where folder_id=’" . $folderID . "’ and word<>’" . $word . "’
28 ) as tbl";

29 $row = mysql_fetch_assoc ( mysql_query ( $query , $this->dbLink ) );
30 $C = $row[’C’];

31

32 $query =

33 "select count(0) as D from (

34 select distinct selection_id

35 from bow

36 where folder_id<>’" . $folderID . "’ and word<>’" . $word . "’
37 ) as tbl";

38 $row = mysql_fetch_assoc ( mysql_query ( $query , $this->dbLink ) );
39 $D = $rowl[’D’];

40

41 $values = array();

42 $values[’A’] = $4A;

43 $values[’B’] = $B;

44 $values[’C’] = $C;

45 $values[’D’] = $D;

46 return $values;

47 }

In the CalculateABCD Values function, the $folderID variable represents the ID
of the category. Notice that all count queries are done on the “bow” table.

Explanation of SQL query for ‘A’ (lines 6-10): First get all document ID where
category ID matches $folderID and word matches $word. Then do a count of these

he result in variable $A.
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Explanation of SQL query for ‘B’ (lines 15-19): First get all document ID where
category ID does NOT match $folderID and word matches $word. Then do a count
of these documents, and store the result in variable $B.

Explanation of SQL query for ‘C’ (lines 24-28): First get all document ID where
category ID matches $folderID and word does NOT match $word. Then do a count
of these documents, and store the result in variable $C.

Explanation of SQL query for ‘D’ (lines 33-37): First get all document ID where
category ID does NOT match $folderID and word does NOT match $word. Then do
a count of these documents, and store the result in variable $D.

Once the variables $A, $B, $C, and $D are set, store them in $values array, and
return this array.

Then, as shown in Listing 17, the function UpdateABCD Values is called, and
is passed the word, the category ID, and the $values array to be updated in the

“doc_bow_raw” table. Code for the function UpdateABCDValues is given below:

Listing 19: UpdateABCDValues Function

1 public function UpdateABCDValues ( &$word , &$folder , &$values ) {
2 $a = $values[’A’];

3 $b = $values[’B’];

4 $c = $values[’C’];

5 $d = $values[’D’];

6

7 $query =

8 "update doc_bow_raw set

9 A=>n" 0 $a "7,

10 B="" . $b . ",

11 c="" . $c . "7,

12 D=>" ., ¢4 . "’

13 where

14 word=’" . mysql_real_escape_string($word,$this->dbLink) . "’ and
15 folder_id=’" . $folder . "’";

16 $result = mysql_query ( $query , $this->dbLink );
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As mentioned earlier, calculating these A, B, C, D values is a big task. Even
with indered columns in all the tables, calculating and updating these A, B, C, D
values in the “doc_bow_raw” table took more than 30 minutes on a computer, which

has the following configuration:

e Processor - 2.2 GHz Intel Core i7
e Memory - 4 GB 1333 MHz DDR3
e HD - 500 GB. 468.35 GB Available.

These A, B, C, D values, however, have to be calculated only once for training.
Once these values are stored in the table, they do not need to be modified unless
more training needs to be done. The training and the testing datasets used for
this thesis are very, very small. Also, as mentioned in section 2.2, we have only 9
categories, which is a very small number of categories. In the real world, there could
be hundreds of categories, and more categories would have to be included dynamically.
New documents have to be included in the training set, and so, training would have to
be done dynamically as well. In such large-scale cases, a very efficient system would
have to be developed where these document counts could be updated much faster!
This area could be further researched. For now, we can move on to explaining the

core of this thesis, the feature selection algorithms.
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CHAPTER 4

FEATURE SELECTION ALGORITHMS

Six different feature selection algorithms were implemented. This section de-

scribes why to use a feature selection algorithm, and describes each algorithm.

4.1 Why Use Feature Selection?

Much research has been done on why feature selection is important and should
be used when categorizing textual data. Shang, Huang, Zhu, Lin, Qu, Wang state

the following:

A major problem of text categorization is the high dimensionality of the
feature space. For many learning algorithms, such high dimensionality is
not permitted. Moreover most of these dimensions are not relative to text

categorization; even some noise data hurt the precision of the classifier.

2]
It is not practical to use all features gathered from the training documents to
use in text-categorization. “Reduction of the features used for the representation
of documents is an absolute requirement for using most of the machine learning
algorithms.” [9]
For this reason, one or more feature selection techniques have to be used, so that
by using less amount of features/tokens/words, new documents can be categorized
easily, faster, and by using less computation power.

Feature selection is “selecting a subset of the features available for describing
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the data” [5], or in other words it is a method to reduce “the dimensionality of the
dataset by removing features that are considered irrelevant for the classification” [9].
There are many benefits to using feature selection. The benefits of using feature

selection are described below:

1. Simplifying or speeding up computations with only little loss in classification

quality. [5]

2. Reduce dimensionality of feature space and improve the efficiency, performance

gain, and precision of the classifier. [2, 10, 9]

3. Improves classification effectiveness, computational efficiency, and accuracy. [10,

1]

4. Helps remove non-informative and noisy features and helps reduce the feature

space to a manageable size. [11]

5. Helps keep computational requirements and dataset size small, especially for
those text-categorization algorithms that do not scale with the feature set size.

9]

George Forman describes that,

The overall feature selection procedure is to score each potential feature
according to a particular feature selection metric, and then take the best k
features. Scoring involves counting the occurrences of a feature in training
positive- and negative-class training examples separately, and then comput-

ing a function of these.
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[6]
What feature selection algorithms were used, and their explanations are given

next.

4.2 Feature Selection Algorithm Explanations

This section describes the feature selection algorithms we used. The algorithms
are: Document Frequency, Information Gain, Mutual Information, Chi Square, NGL
(Ng-Goh-Low) Coefficient, and GSS (Galavotti-Sebastiani-Simi) Coefficient. Each

subsection below explains an algorithm.

4.2.1 Document Frequency - Explanation

Document frequency is a very simple feature selection method. Document fre-
quency for a term can be found by counting the number of documents in which a
term/feature occurs. [1, 10, 3]. Document frequency assumes that rare terms are
“non-informative for category prediction, or non-influential in global performance”
[3], and “terms with higher document frequency are more informative for classifica-
tion” [1].

Document frequency is already calculated, because we have already calculated

the A, B, C, D values, so document frequency is:

DF = A
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4.2.2 Information Gain - Explanation

Information gain value measures “the number of bits of information obtained
for category prediction by knowing presence of absence of a term in a document”.
3, 1, 10].

According to Mukras et al., “the idea behind IG is to select features that reveal
the most information about the classes” [12].

Information gain values were calculated as follows:

IG(t,e)= > Y  P(to)- log%

ce{ci, G} te{tr,tr}

4.2.3 Mutual Information - Explanation

Mutual information method assumes that the “term with higher category ratio
is more effective for classification” [1].
Mutual information can be calculated as follows using our already calculated A,

B, C, D values:

Ax N

MI=log i 5ya+ B)

1]

Here, A is the number of documents that contain the term, ¢, and also belong
to category, ¢. B is the number of documents that contain the term, ¢, but do not
belong to category, c. C is the number of documents that do not contain the term, ¢,

but belong to category, ¢. N is the number of training documents. [1, 3].

4.2.4 Chi Square - Explanation
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Chi square measures the lack of independence between a term, ¢, and the cate-
gory, c [10, 3.
Chi square, x2, can be calculated as follows, again, using our previously calcu-

lated A, B, C, D values:

- N(AD — CB)?
~ (A+C)B+ D)(A+ B)(C+ D)

X

[4]

Again, A is the number of documents that contain the term, ¢, and also belong

to category, c¢. B is the number of documents that contain the term, ¢ but do not
belong to category, c¢. C is the number of documents that do not contain the term,
t, but belong to category, c¢. D is the number of documents that do not contain the

term, ¢, and do not belong to category, c¢. N is the number of training documents.

[4].

4.2.5 NGL (Ng-Goh-Low) Coefficient - Explanation

NGL Correlation Coefficient (CC) is a variant of x? metric. A positive NGL CC
value indicates that word, w, is a possible feature word and correlates with category,
¢, while a negative value means word, w, correlates with category, ¢. The NGL CC

value can be computed as follows:

NGL =

\/jTT . [P(tk, Ci) . P(tk, Cz) P( z) (tlw Cl)]
\/P(tk) - P(ty) - P(ci) - P(&)
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Which we can easily compute using the A, B, C, D values as:

VN - (AD — CB)

NGL =
V(A+C)(B+D)(A+B)(C + D)

Uchyigit and Ma tell us that, “the NGL coefficient is reported to have better perfor-
mance than y?” [13] They say so, because NGL “selects words that correlate with ¢
(i.e. are positive) and does not select those words which correlate with ¢, unlike the

x? statistic” [13].

4.2.6 GSS (Galavotti-Sebastiani-Simi) Coefficient - Explanation

Galavotti-Sebastiani-Simi propose a simplified x? statistic. They remove the

VN factor, and the denominator completely. They describe the /N factor as being

unnecessary. They also remove the denominator, \/ (A+C)(B+ D)(A+ B)(C+ D),
by giving the reason that the denominator gives high Correlation Coefficient score to

rare words, and rare categories [13]. The GSS CC value can be computed as follows:
GSS = P(ty,¢;) - P(tg, &) — P(ty, ¢i) - P(ty, ;)
Which we can easily compute using the A, B, C, D values as:
GSS=AD-CB

Now that we have understanding of these feature selection algorithms, we can

move on to implementation. Next chapter describes how values of these algorithms

were calculated.
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CHAPTER 5

IMPLEMENTATION OF FEATURE SELECTION ALGORITHMS

This section gives implementation details for each algorithm described above.
Before we begin implementation details on any algorithm, we will first look at a
common task that is required for all algorithms, which is to retrieve the A, B, C,
D values from the database. A utility DBDocBowRaw is created, which includes
many functions related to the “doc_bow_raw” table, and also contains the function
RetrieveABCDValues. Implementation of this function is given below, which is used

to get the A, B, C, D values out of the database and into the application.

Listing 20: Retrieve ABCDValues Function

1 public function RetrieveABCDValues () {

2 $query =

3 "select pk_doc_bow_raw, a, b, c, d from doc_bow_raw";
4

5 $result = mysql_query ( $query , $this->dbLink );
6

7 if ( $result ) {

8 $list = array(Q);

9 while ( $row = mysql_fetch_assoc ( $result ) ) {
10 $pk = $row[’pk_doc_bow_raw’];

11 if ( !tisset($1list[$pk]) ) {

12 $list [$pk] = array();

13 }

14 unset ($row [’ pk_doc_bow_raw’]);

15 $list [$pk] = $row;

16 X

17

18 return $list;

19 }

20 else {

21 return false;

22 }

23 }

The while loop (lines 9-16) fetches rows from the resource, $result. The purpose

of the code inside the while loop is to create a new list, called $list, with keys being
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the primary key values of the “doc_bow_raw” table. Meaning, given the following

array data-structure:

Listing 21: Sample RAW Array Result

1

2 [0] => Array (

3 [pk_doc_bow_raw] => 404
4 [a] => 2

5 [b]l => 9

6 [c] => 14

7 [d] => 165

8 )

9 [1] => Array (

10 [pk_doc_bow_raw] => 405
11 [a] => 4

12 [b] => 10

13 [c] => 13

14 [d] => 76

15 )

16 [2] => Array (

17 [pk_doc_bow_raw] => 406
18 [a] => 2

19 [b] => 12

20 [c] => 44

21 [d] => 165

22 )

The while loop will convert the structure into:

Listing 22: Sample Converted Array Result

1 Array (
2 [404] => Array (
3 [a] => 2
4 [b] => 9
5 [c] => 14
6 [d] => 165
7 )
8 [405] => Array (
9 [a] => 4
10 [b] => 10
11 [c] => 13
12 [d] => 76
13 )
14 [406] => Array (
15 [a] => 2
16 [b] => 12
17 [c] => 44
8 [d] => 165
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19 )
20 )

Note that pk_doc_bow_raw were dropped from each sub-array, and became keys

in the array. The following code shows how we call the RetrieveABCDValues and

retrieve the A, B, C, D values.

Listing 23: Calling Retrieve ABCDValues Function

1 $dbDocBOWRaw = new DBDocBOWRaw () ;
2 $dbr = $dbDocBOWRaw->RetrieveABCDValues ();

Now that we have the A, B, C, D values stored in the variable $dbr for our

feature selection methods, we can begin implementation details for each algorithm.

Let us begin with Document Frequency.

5.1 Document Frequency - Calculation Implementation Details

We have already calculated document frequency values as the ‘A’ column in the

“doc_bow_raw” table in the database. No further calculations are necessary. Let us

look at information gain next.
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5.2 Information Gain - Calculation Implementation Details

Now that we have the A, B, C, D values in the $dbr variable, we can loop through
all items in $dbr and calculate information gain using the IG formula. Here’s the code

to calculate and update the information gain values:

Listing 24: Calculate and Update Information Gain Values

1 foreach ( $dbr as $pk => $counts ) {

2 $a = $counts[’a’];

3 $b = $counts[’b’];

4 $c = $counts[’c’];

5 $d = $counts[’d’];

6

7 $t_c = $a * log ( $a/(($a+$c)*($a+$b)) , 2 );

8 $tBar_c = $b * log ( $b/(($b+$d)*($a+$b)) , 2 );

9 $t_cBar = $c * log ( $c/(($a+$c)*($c+$d)) , 2 );

10 $tBar_cBar = $d * log ( $d4/(($b+$d)*($c+$d)) , 2 );
11

12 $dbr [$pk][’ig’] = $t_c + $tBar_c + $t_cBar + $tBar_cBar;
13 F

14

15 $dbDocBOWRaw ->UpdateInformationGain ( $dbr );

The code above goes through each item in $dbr, and calculates the IG values
according to the formula, and puts the result back in $dbr. At the end, Updatelnfor-
mationGain is called, and is passed $dbr by reference to update the information gain

values in the database. The code below shows the UpdatelnformationGain function.

Listing 25: UpdatelnformationGain Function

$result = mysql_query ( $query , $this->dbLink );

1 public function UpdateInformationGain ( &$dbr ) {

2 foreach ( $dbr as $pk => $details ) {

3 $query =

4 "update doc_bow_raw

5 set information_gain=’" . $details[’ig’] . "’
6 where pk_doc_bow_raw="" . $pk . "’";

7

8

9
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5.3 Mutual Information - Calculation Implementation Details

Code is given below to calculate and update the mutual information values from
the $dbr variable. Because the MI formula requires the number of training documents,

a variable, $numTrainingDocuments, is created with the value of 1,010.

Listing 26: Calculate and Update Mutual Information Values

1 $numTrainingDocuments = 1010;

2 foreach ( $dbr as $pk => $counts ) {

3 $A = $counts[’a’];

4 $B = $counts[’b’];

5 $C = $counts[’c’];

6 $mi = log( ($A*$numTrainingDocuments) / (($A+$C)*($A+$B)) ,2);
7

8 $dbDocBOWRaw ->UpdateMIValue ( $pk , $mi );

9 }

The function UpdateMIValue is given below that updates the mutual informa-
tion values in the database. Note that this function is executed at every iteration in

the loop given above.

Listing 27: UpdateMIValue Function

$result = mysql_query ( $query , $this->dbLink );

1 //Passed by reference.

2 public function UpdateMIValue ( &$pk , &%mi ) {

3 $query =

4 "update " . $this->table . " set mutual_information="" . $mi . "’
5 where pk_doc_bow_raw=’" . $pk . "’";

6

7
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5.4 Chi Square - Calculation Implementation Details

Code is given below to calculate and update the x? values from the $dbr variable.
Again, $numTrainingDocuments is used with the value of 1,010, as the x? formula

requires the number of training documents..

Listing 28: Calculate and Update x? Values

1 $numTrainingDocuments = 1010;

2 foreach ( $dbr as $pk => $counts ) {

3 $A = $counts[’a’];

4 $B = $counts[’b’];

5 $C = $counts[’c’];

6 $D = $counts[’d’];

7 $chivValue = ( $numTrainingDocuments * pow($A*$D-$C*$B,2) )
8 / ( ($A+3$C)*x($B+$D)*($A+$B)*x($C+$D) ) ;
9

10 $dbDocBOWRaw ->UpdateChiValue ( $pk , $chiValue );

11 }

The function UpdateChiValue is given below that updates the x? values in the
database. Note that this function is also executed at every iteration in the loop given

above.

Listing 29: UpdateChiValue Function

$result = mysql_query ( $query , $this->dbLink );

1 //Passed by reference.

2 public function UpdateChiValue ( &3$pk , &$chiValue ) {

3 $query =

4 "update " . $this->table . " set chi_square=’" . $chiValue . "’
5 where pk_doc_bow_raw=’" . $pk . "’";

6

7
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5.5 NGL - Calculation Implementation Details

Code is given below to calculate and update the NGL coefficients from the $dbr
variable. The number of training documents is also required to calculate the NGL
coefficients. So, a variable, $numTrainingDocuments, is created with the value of

1,010.

Listing 30: Calculate and Update NGL Coefficients

1 $numTrainingDocuments = 1010;

2 foreach ( $dbr as $pk => $counts ) {

3 $A = $counts[’a’];

4 $B = $counts[’b’];

5 $C = $counts[’c’];

6 $D = $counts[’d’];

7 $ngl = ( sqrt($numTrainingDocuments) * ($A*x$D-$C*$B) )
8 / sqrt ( ($A+$C)* ($B+$D) * ($A+$B) *($C+3$D) ) ;
9

10 $dbDocBOWRaw ->UpdateNGLValue ( $pk , $ngl );

11}

The function UpdateNGLValue is given below that updates the NGL coefficients
in the database. Again, this function is executed at every iteration in the loop given

above.

Listing 31: UpdateNGLValue Function

$result = mysql_query ( $query , $this->dbLink );

1 //Passed by reference.

2 public function UpdateNGLValue ( &$pk , &3%ngl ) {

3 $query =

4 "update " . $this->table . " set ngl=’" . $ngl . "’
5 where pk_doc_bow_raw=’" . $pk . "’";

6

7
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5.6 GSS - Calculation Implementation Details

Code is given below to calculate and update the GSS coefficients from the $dbr

variable.

Listing 32: Calculate and Update GSS Coefficients

1 foreach ( $dbr as $pk => $counts ) {

2 $A = $counts[’a’];

3 $B = $counts[’b’];

4 $C = $counts[’c’];

5 $D = $counts[’d’];

6 $gss = ($A*$D-$C*$B);

7

8 $dbDocBOWRaw ->UpdateGSSValue ( $pk , $gss );
9 3}

The function UpdateGSSValue is given below that updates the GSS coefficients
in the database. Again, this function is executed at every iteration in the loop given

above.

Listing 33: UpdateGSSValue Function

$result = mysql_query ( $query , $this->dbLink );

1 //Passed by reference.

2 public function UpdateGSSValue ( &3$pk , &$gss ) {

3 $query =

4 "update " . $this->table . " set gss=’" . $gss . "’
5 where pk_doc_bow_raw=’" . $pk . "’";

6

7

We have calculated all needed values using our feature selection algorithms.
Now, we run our text categorization engine and determine which feature selection

algorithms can give us the best results. The next chapter reports the results.
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CHAPTER 6

RESULTS

6.1 Using All Features

Recall that we already created the “doc_bow_raw_test” table from the test data.
This same table is used in testing. We also calculated precision, recall, and F1 values
to determine how accurately documents were categorized when using different feature

selection methods. We can calculate recall and precision as follows:

recall = T—P
TP+ FN
L TP
precision = TP+ FP

Here, TP is the number of true-positives, FP is the number of false-positives,
and FN is the number of false-negatives.

A true-positive is when a human and the categorization algorithm both agree
that a document belongs in the exact same category. For example, if we believe a
document is about “Indian” food recipe, then the categorizer must also give “Indian”
category as the result.

A false-positive is when a human knows that a document must belong to some
category, C'4, but the categorizer gives category, Cp, as the result. Both results
belong to some parent category, C, but category C'4#Cp. For example, a human
knows that a document is about “Indian” food recipe, and categorizes that document
into “Indian” category, but the categorizer puts the same document into “Italian”
food recipe category. Here, “Indian” and “Italian” categories are close to each other,
belong to a parent category, Food. This is a case of false-
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positive.

A false-negative is when a human knows that a document must belong to some
category, X, but the categorizer gives a completely different category, Y, as the result.
Both the human and the categorizer completely disagree on the result. This can
happen, for example, when a human knows that a document is a technology related
article, and, say, he or she believes, the document must belong to the “Google”
category, but categorizer says the document is about “Chinese” food recipe, and
categorizes the same document into “Chinese” category. Even though this is a bit
extreme example, categorizer can give terribly wrong results.

F1 is the harmonic mean of precision and recall and is calculated as follows:

2
F1= T I

precision recall

The following results were achieved when we categorized 338 test documents.
Here all 20,419 features from the “doc_bow_raw” table were used for calculation.

Meaning, feature selection algorithms were used more as a score than as feature

selection.
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Method | Total | TP | FP | FN | Precision | Recall | F1
DF 338 || 232106 | O 0.686 1 0.814
IG 338 || 276 | 56 | 6 0.831 0.979 | 0.899
e 338 || 313 ] 25 | O 0.926 1 0.962
MI 338 299 | 38 | 1 0.887 0.997 | 0.939

MI (*) 338 ||304] 34 | O 0.899 1 0.947
NGL 338 || 301] 37 | O 0.891 1 0.942
NGL (*) | 338 |[309| 29 | 0 0.914 1 0.955
GSS 338 || 253 8 | O 0.749 1 0.856

Algorithms marked (*) are optimal runs. Meaning, not all features were used,
but rather only a small set of features from 20,419 total features.

The 6 FN of the IG method are listed below:

Listing 34: False-Negatives of Information Gain

Actual: India Result: Facebook
Actual: India Result: Apple

Actual: India Result: Facebook
Actual: JavaScript Result: Google
Actual: JavaScript Result: Google
Actual: JavaScript Result: Facebook

S T W N

The FN of the MI (non-optimal) method is listed below:

Listing 35: False-Negatives of Mutual Information

1 Actual: India Result: Google

Our main purpose was to get as best recall values as possible, as to avoid false-
negatives. For most methods, we got recall of 1. Meaning, our results were what
we wanted. However, here, we used all 20,419 features, which is not what we should

purpose of any feature selection algorithm is to score features and
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keep the most informative features, and remove all other non-informative features.

Next, we address this issue.

6.2 Using Selected Features

Our previous results used all 20,419 features, and we wanted to improve on this
count. In other words, we wanted to use as less features as possible, and still maintain
a high number of TP values. In this section, we address this very issue.

For each feature selection algorithm, we determined what was the min-value
and the max-value of that algorithm. Then, we used a loop for each feature selection
method from an approximate min value to an approximate max value, and selected
feature only in that range, and ran the categorization algorithm, and this gave us
results on how many 7P it found.

Below we explain min to max range for each algorithm, and show the TP results
after selecting only partial features. Keep in mind that we have a total of 20,419

features, and 338 test documents.

6.2.1 Document Frequency - Selecting Partial Features

We determined document frequency’s range to be from 0 to 160. We, then,
ran a loop from 0 to 160 and incremented the cutoff value by 10. Here, for example,
cutofff value of 20 would mean that, a feature has to appear in at least 20 documents.

In other words, select only those feature that are in 20 or more documents. Below

are the sample results:
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Cutoff | # of Features Used | # of Features Removed | TP
0 20,419 0 232
10 1,714 18,705 218
20 729 19,690 201
30 412 20,007 182
40 261 20,158 179
50 175 20,244 164
60 127 20,292 135

Document frequency is not a very useful feature selection algorithm. But even
for a simple feature selection algorithm, such as DF, after removing 18, 705 features,
we still got TP of 218. Meaning even after removing 18, 705 features, we lost only 14

TP.

Next, we look at how well information gain performs.

6.2.2 Information Gain - Selecting Partial Features

Information gain values ranged from —15,000 to 0. Below are the two sample

results we obtained:

Cutoff | # of Features Used | # of Features Removed || TP

-15,000 20,419 0 276

-10,000 6,184 14,235 276

Notice that we still have the same number of TP after removing 14, 235 features.

6.2.3 Mutual Information - Selecting Partial Features
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Mutual information values ranged from —6 to 4, and we ran the loop by incre-

menting the cutoff value by 0.5. Full results are listed below:

Cutoff | # of Features Used | # of Features Removed | TP
-6 20,419 0 299
-5.5 20,418 1 299
5 20,415 4 299
-4.5 20,398 21 299
-4 20,374 45 298
-3.5 20,322 97 298
-3 20,228 191 298
-2.5 20,043 376 297
-2 19,770 649 299
-1.5 19,398 1,021 300
-1 18,849 1,570 300
-0.5 18,020 2,399 302
0 16,953 3,466 303
0.5 15,382 5,037 303
1 13,509 6,910 304
1.5 11,439 8,980 303
2 9,415 11,004 297
2.5 7,374 13,045 286
3 4,921 15,498 188
3.5 955 19,464 56

ith positive mutual information value yield better results. The
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point here to notice is that, even after removing 6,910 feature, we got even better
results. Moreover, when we used all 20,419 features, we got 299 TP. But when we

removed 11,004 features (cutoff 2), we got 297 TP.

6.2.4 x? - Selecting Partial Features

Recall from our previous results that we got 313 TP. For our case, x? is the best
feature selection algorithm. Next, we wanted to see how well x? performed when we
removed as many features as possible. We determined the range of x? values to be
from 0 to about 400. We ran the loop, and incremented the cutoff by 10. The results

we obtained are shown below:

Cutoff | # of Features Used | # of Features Removed | TP
0 20,419 0 313
10 4,916 15,503 313
20 2,039 18,380 311
30 1,270 19,149 308
40 841 19,578 306
50 635 19,784 306
60 480 19,939 304
70 369 20,050 301
80 310 20,109 305
90 264 20,155 304
100 218 20,201 303
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Cutoff | # of Features Used | # of Features Removed | TP
110 186 20,233 303
120 161 20,258 302
130 138 20,281 306
140 123 20,296 300
150 106 20,313 302
160 95 20,324 300
170 90 20,329 297
180 80 20,339 302
190 73 20,346 301
200 65 20,354 303
210 61 20,358 302
220 52 20,367 283
230 A7 20,372 282
240 43 20,376 273
250 36 20,383 231
260 33 20,386 231
270 29 20,390 228
280 28 20,391 231
290 26 20,393 213
300 26 20,393 213
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Cutoff | # of Features Used | # of Features Removed | TP
310 24 20,395 213
320 21 20,398 184
330 19 20,400 184
340 17 20,402 175
350 16 20,403 145
360 12 20,407 120
370 11 20,408 120
380 9 20,410 66
390 9 20,410 66

Again, x? feature selection algorithm performed very well even with less amount
of features. Even when we removed 15,503 features, and used only 4,916 features,
results (7P) did not change. The number of TP stay above 300 even when we use

only 61 features.

6.2.5 NGL Coefficient - Selecting Partial Features

NGL was another algorithm that also performed well. NGL values ranged from

—T7 to 21, and we ran the loop by incrementing the cutoff by 1. Below are the results:
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# of Features Used

# of Features Removed

TP

10

11

12

20,419
20,418
20,409
20,358
20,223
19,809
18,877
17,061
14,163
10,737
6,078
2,572
1,540
995
642
443
306
218
157

116

0
1
10
61
196
610
1,542
3,358
6,256
9,682
14,341
17,847
18,879
19,424
19,777
19,976
20,113
20,201
20,262

20,303

70

301

301

301

303

305

305

307

307

306

306

309

305

304

296

295

281

298

298

304
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Cutoff | # of Features Used | # of Features Removed | TP
13 91 20,328 300
14 70 20,349 304
15 50 20,369 282
16 36 20,383 231
17 26 20,393 213
18 20 20,399 184
19 12 20,407 120
20 9 20410 66

As can be easily seen from these results, NGL performs almost as well as the

x? algorithm.

6.2.6 GSS Coefficient - Selecting Partial Features

GSS coefficient values ranged from —48,754 to 123,981, and the loop was ran

with the cutoff incremented by 10,000. Here are the results:
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Cutoff | # of Features Used | # of Features Removed | TP
-48754 20419 0 253
-38754 20416 3 253
-28754 20398 21 253
-18754 20345 74 252
-8754 20096 323 253
1246 7141 13278 250
11246 879 19540 236
21246 393 20026 220
31246 212 20207 201
41246 132 20287 192
51246 94 20325 176
61246 70 20349 169
71246 50 20369 135
81246 41 20378 125
91246 22 20397 73
101246 8 20411 71
111246 ) 20414 73
121246 2 20417 33
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6.3 Explanation of Results

We have demonstrated 6 different feature selection algorithms, and x? and NGL
algorithms have out-performed all other algorithms. These results seem to be in
agreement with Kotcz, Prabakarmurthi, Kalita, and Yang & Pedersen’s results, as
they also found Chi-Squared to be very effective [3, 11]. Dasgupta et al. [5] describe
that “it is often difficult to claim more than a vague intuitive understanding of why
a particular feature selection algorithm performs well when it does” [5].

Kotcz, Prabakarmurthi, and Kalita have also shown that, “by reducing the
feature space, the accuracy of a classification method can be increased and, even
when only very few of the original features are kept, good accuracy can maintained”
[11]. Our results agree. We have shown that by keeping only the informative features,
and remowving all other non-informative features, we can either improve results, TP,
or can get same results by reducing the feature set by a very large degree. As can be
seen from the results that even after removing many features, we were still able to
get TP that were close to the optimal.

Conducting one sample T-Test on precision values, with hypothetical mean of

0.9483, we got P value of 0.0362, and this indicates that the difference is statistically

significant.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

Text categorization is very important, but we believe, the problem of feature
selection is as much, or more important than text-categorization. In this thesis, we
discussed many important topics ranging from collecting data, to organizing data
and ultimately using the organized data to efficiently conduct tests using the feature
selection algorithms.

In chapter 2, we showed how we used a MySQL database to efficiently store
our collection of documents. We would like to mention again that using a MySQL
database to store data was a really good decision, as not only it made implementation
easier for us, but it was also much more efficient than using text files. MySQL also
has the ability to index data, which can help retrieve and update data speedily. In
the same chapter, we described what setup was used for the database, and described
the structure of each table in the database. Then we explained the details of the b8
lexer, and described how we used the b8 lexer to create bag of words, or BOW, to
help us train and test data.

Chapter 3, even though a short one, is the core of this thesis. In chapter 3,
we described how the counting of the training documents was done using BOW. We
explained what the A, B, C, D values were, and how we calculated each of those
values using our training data. We also explained why these A, B, C, D values are
important and very much needed for the feature selection algorithms.

In chapter 4, we first showed the important of feature selection algorithms,
and. then.we gave.explanation on the following feature selection methods: Document
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Frequency, Information Gain, Mutual Information, Chi Square, NGL (Ng-Goh-Low)
Coefficient, and GSS (Galavotti-Sebastiani-Simi) Coefficient.

In chapter 5, we implemented the above mentioned feature selection algorithms.
In this chapter, we gave code listings on how each of the algorithms were implemented.

Results are shown in chapter 6. We showed what feature selection algorithm
turned out to be the best algorithm for our case. We then went on to show that
even after removing features, and in some cases more than 90%, we were still able to
maintain over 99% of TP in our results. This study has shown how powerful feature
selection algorithms can be.

We have shown some dramatic improvements using our results. And we believe
feature selection methods should be researched further, on Very Large Scale Data.
The number of training and test documents used in this thesis are very small compared
to what is out there on the Internet. Moreover, in this thesis, only 9 categories were
used. In the real world, hundreds of categories exist. To have a large-scale categorizer,
powerful feature selection algorithm(s) would have to be developed. And we believe,
this area could be researched and tested on further.

Another area that we and George Forman believe is that of “hierarchical cate-

gories”. Forman says the following:

Hierarchy is among the most powerful of organizing abstractions. Hierar-
chical classification includes a variety of tasks where the goal is to classify
items into a set of classes that are arranged into a tree or directed acyclic

graph.
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and Forman believes,

The problem is cast as a multi-label task to select multiple interior nodes,

optionally including all super-classes along the paths to the root.

7]
We strongly believe, conducting further research on the topics mentioned above

would be very helpful, as it can ultimately help categorize all documents in the world.
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