
www.manaraa.com

UNLV Theses, Dissertations, Professional Papers, and Capstones

12-2011

Study of feature selection algorithms for text-categorization Study of feature selection algorithms for text-categorization

Kandarp Dave
University of Nevada, Las Vegas

Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations

 Part of the Databases and Information Systems Commons, and the Systems Architecture Commons

Repository Citation Repository Citation
Dave, Kandarp, "Study of feature selection algorithms for text-categorization" (2011). UNLV Theses,
Dissertations, Professional Papers, and Capstones. 1380.
https://digitalscholarship.unlv.edu/thesesdissertations/1380

This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV
with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself.

This Thesis has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by
an authorized administrator of Digital Scholarship@UNLV. For more information, please contact
digitalscholarship@unlv.edu.

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/thesesdissertations
https://digitalscholarship.unlv.edu/thesesdissertations?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F1380&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F1380&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F1380&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalscholarship.unlv.edu/thesesdissertations/1380?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F1380&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalscholarship@unlv.edu

www.manaraa.com

STUDY OF FEATURE SELECTION ALGORITHMS FOR
TEXT-CATEGORIZATION

By

Kandarp Dave

Bachelor of Science
University of Nevada, Las Vegas

2009

A thesis submitted in partial fulfillment
of the requirements for the

Master of Science in Computer Science
School of Computer Science

Howard R. Hughes College of Engineering

Graduate College
University of Nevada, Las Vegas

December 2011

www.manaraa.com

Copyright by Kandarp Dave 2011
All Rights Reserved

www.manaraa.com

ii

THE GRADUATE COLLEGE

We recommend the thesis prepared under our supervision by

Kandarp Dave

entitled

Study of Feature Selection Algorithms for Text-Categorization

be accepted in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science
Howard R. Hughes College of Engineering

Kazem Taghva, Committee Chair

Laxmi Gewali, Committee Member

Ajoy Datta, Committee Member

Venki Mukhukumar, Graduate College Representative

Ronald Smith, Ph. D., Vice President for Research and Graduate Studies
and Dean of the Graduate College

December 2011

www.manaraa.com

ABSTRACT

STUDY OF FEATURE SELECTION ALGORITHMS FOR
TEXT-CATEGORIZATION

By

Kandarp Dave

Dr. Kazem Taghva, Examination Committee Chair
Professor of Computer Science

University of Nevada, Las Vegas

This thesis will discuss feature selection algorithms for text-categorization. Fea-

ture selection algorithms are very important, as they can make-or-break a categoriza-

tion engine. The feature selection algorithms that will be discussed in this thesis

are Document Frequency, Information Gain, Chi Squared, Mutual Information, NGL

(Ng-Goh-Low) coefficient, and GSS (Galavotti-Sebastiani-Simi) coefficient. The gen-

eral idea of any feature selection algorithm is to determine importance of words using

some measure that can keep informative words, and remove non-informative words,

which can then help the text-categorization engine categorize a document, D, into

some category, C. These feature selection methods are explained, implemented, and

are provided results for in this thesis. This thesis also discusses how we gathered and

constructed training and testing data, along with the setup and storage techniques

we used.

iii

www.manaraa.com

TABLE OF CONTENTS

ABSTRACT . iii

CHAPTER 1 INTRODUCTION . 1

CHAPTER 2 DATA COLLECTION . 4
2.1 Setup . 4
2.2 Categories . 5
2.3 Collecting Data . 6
2.4 Tagging Documents . 13
2.5 Database Setup . 14

2.5.1 Table “folder” . 15
2.5.2 Table “selection” . 16
2.5.3 Table “selection folder” .18
2.5.4 Table “selection test” .19
2.5.5 Table “selection folder test” . 21
2.5.6 Table “bow” . 22
2.5.7 Table “doc bow raw” . 24
2.5.8 Table “doc bow raw test” . 27

2.6 Creating Bag of Words for Training Dataset - “bow” Table 29
2.6.1 The b8 Lexer .29
2.6.2 Putting Code Together and Creating BOW . 32
2.6.3 Importance of the “BOW” Table . 36

2.7 Creating Bag of Words for Training Dataset - “doc bow raw” Table 37
2.8 Creating Bag of Words for Test Dataset - “doc bow raw test” Table 39

CHAPTER 3 COUNTING DOCUMENTS . 42
3.1 The A, B, C, D Values . 42

3.1.1 Explanation of the A, B, C, D Values .42
3.1.2 Calculating and Updating “doc bow raw” with the A, B, C, D Values 43

CHAPTER 4 FEATURE SELECTION ALGORITHMS . 47
4.1 Why Use Feature Selection? . 47
4.2 Feature Selection Algorithm Explanations . 49

4.2.1 Document Frequency - Explanation .49
4.2.2 Information Gain - Explanation . 50
4.2.3 Mutual Information - Explanation . 50
4.2.4 Chi Square - Explanation .51
4.2.5 NGL (Ng-Goh-Low) Coefficient - Explanation . 51
4.2.6 GSS (Galavotti-Sebastiani-Simi) Coefficient - Explanation 52

CHAPTER 5 IMPLEMENTATION OF FEATURE SELECTION ALGORITHMS
53
5.1 Document Frequency - Calculation Implementation Details 55
5.2 Information Gain - Calculation Implementation Details 56

iv

www.manaraa.com

5.3 Mutual Information - Calculation Implementation Details 57
5.4 Chi Square - Calculation Implementation Details . 58
5.5 NGL - Calculation Implementation Details . 59
5.6 GSS - Calculation Implementation Details . 60

CHAPTER 6 RESULTS .61
6.1 Using All Features . 61
6.2 Using Selected Features . 64

6.2.1 Document Frequency - Selection Partial Features . 64
6.2.2 Information Gain - Selection Partial Features . 65
6.2.3 Mutual Information - Selection Partial Features . 65
6.2.4 χ2 - Selection Partial Features . 67
6.2.5 NGL Coefficient - Selection Partial Features . 69
6.2.6 GSS Coefficient - Selection Partial Features .71

6.3 Explanation of Results . 73

CHAPTER 7 CONCLUSION AND FUTURE WORK . 74

BIBLIOGRAPHY . 77

VITA .79

v

www.manaraa.com

CHAPTER 1

INTRODUCTION

With the growth of online information, text-categorization has become a very

important technology to categorize a large number of documents. The idea of text-

categorization, or text-classification, is to categorize textual data into one or more pre-

defined categories [1, 2, 3, 4]. Given a set of documents, D, and some pre-determined

set of categories, C, the idea of text-categorization is to categorize documents, D, into

appropriate categories, C, as best as possible. Text-categorization is a “supervised

technique that uses labeled training data to learn the classification system and then

automatically classifies the remaining text using the learned system” [4].

Feature selection is an important part of text-categorization, and much re-

search has been done on various feature selection algorithms. Feature selection can

be thought of as selecting the best words of a document that can help categorize

that document. As a very simple example, when a human is reading some docu-

ment that contains words such as “iPhone”, “iPad”, “iPod”, or “Mac”, he or she

can easily determine that if a category related to technology named “Apple” exists,

then this document must belong in that category. The idea of feature selection,

in simple words, is to determine importance of words using some measure that can

keep informative words, and remove non-informative words, which can then help the

text-categorization engine.

As adult humans, we have already been trained to put, for example, “iPhone”

related documents in “Apple” (technology related) category, but to train an algo-

rithm to pick up informative words is a different story, and there are many steps to

1

www.manaraa.com

this process. First, some categories have to be pre-defined that can be used for both

training and testing. Once the training documents are gathered, and categories are

determined, documents have to be tagged with an appropriate category. In the real

world, a document can belong to multiple categories, but for simplicity, we will tag

a document with only one category. Once the training documents are tagged, a bag

of words, or BOW, can be created, which can be used to categorize test documents.

From the BOW, we can keep informative words, and remove non-informative words,

and the idea of choosing informative words, and removing the rest is called Feature

Selection. The feature selection methods that are studied, implemented, and provided

results for, are the following: Document Frequency, Information Gain, Mutual Infor-

mation, Chi Square, NGL (Ng-Goh-Low) Coefficient, and GSS (Galavotti-Sebastiani-

Simi) Coefficient. These algorithms have been studied before, mainly on Reuters and

Newsgroup input data. We did not use Reuters or Newsgroup data, instead, for our

needs, we built custom (mixed) data ourselves.

Gathering these training and testing documents is a difficult task, but keeping all

the gathered data organized is also difficult. What setup we used to address document

organization issue is discussed in chapter 2. Chapter 2 also gives details about how we

gathered data, how we stored all information, and how appropriate data-structures

were created so that feature selection algorithms can be run easily and efficiently.

Chapter 3 builds the core of this thesis that helps all the feature selection algorithms

mentioned. Chapter 3 talks about how documents are counted, and how the counts

are stored. Chapter 4 explains why feature selection algorithms need to be used, and

gives explanations about each algorithm. Chapter 5 gives implementation details for

2

www.manaraa.com

each feature selection algorithm. Chapter 6 shows all the results we achieved. The

thesis is concluded in chapter 7. Before we begin to explain, please note that the

following pairs of words are used interchangeably throughout this thesis:

• “selection” and “document”

• “folder” and “category”

3

www.manaraa.com

CHAPTER 2

DATA COLLECTION

2.1 Setup

Choosing a correct setup for text-categorization is an important step, as ex-

plained by Dasgupta, Drineas, Harb, Josifovski, and Mahoney that “challenges asso-

ciated with automated text categorization come from many fronts: one must choose

an appropriate data structure to represent the documents” [5]. There were multiple

factors involved in choosing what environment to use for training data and testing

against the trained model. We chose to use PHP, as it takes care of minute details

of implementation by providing high-level interfaces, and objects such as arrays that

can be associative. It would not have made much difference whether we had used

C++, as most of the calculations had to be done database side. There were parts

where calculation had to be done using an application layer and not the database

layer. Such calculations include calculating Chi Square, Information Gain, Mutual

Information, NGL, and GSS values. Most of these calculations took only about 5

seconds, including retrieving data from storage, calculating values, and updating the

result values back in the storage space.

This brings me to the next part: Storage. For storage, we used a MySQL

database. We chose not to use plain text files due to the amount of data we knew we

had to deal with. MySQL and PHP work very well together as PHP has a built in

connector that can easily access MySQL database. Also, it is much easier to insert,

update, and retrieve thousands of rows of data into and out of MySQL, especially

with transaction ability, and SQL. Another big positive point with using MySQL is

4

www.manaraa.com

that we can easily index data, which makes searching of the indexed columns really

fast. MySQL turned out to be the best choice to use than to store data in plain text

files for the provided reasons.

2.2 Categories

Before any data collection could begin, we had to determine what categories we

wanted to work with. We did not want to have categories that were all completely

separate from each other. Categories “Technology” and “Food” are considered very

separate from each other. Categories such as “JavaScript” and “PHP” are considered

very close to each other. Meaning, we wanted have a mix of categories where some

categories would be very close to each other and some other categories that would be

very separate from each other. Here is the list of categories we worked with:

List of Categories - List 1

• Chinese - Food.

• Indian - Food.

• Italian - Food.

• India - General news.

• Apple - Technology news.

• Google - Technology news.

• Facebook - Technology news.

• PHP - Technology.

• JavaScript - Technology.

As can be seen from the list of categories, “Chinese”, “Indian”, and “Italian”

are very close to each other; consider them in group 1. Consider category “India” in

group 2. Categories “Apple”, “Google”, and “Facebook” are related as well; so we

will put them in group 3. Categories “PHP”, and “JavaScript” will go in group 4 as

5

www.manaraa.com

those categories are related. Now it’s easy to see that group 1, 2, 3, and 4 are all very

separate from each other. Having such a mix of categories helps determine how well

a categorization algorithm is, and how well feature selections methods are. Now that

we have categories, we can collect data.

2.3 Collecting Data

Data was manually gathered from various online sources (websites) with the help

of some utilities, made by us, that could help us gather data faster. 1,010 training

documents and 338 testing documents were manually collected and tagged.

Here is the unique list of subdomain-domain names from which we gathered

training data:

List of Subdomain-Domain Names Used for Training Data - List 2

• rasamalaysia.com

• homechineserecipes.com

• food.com

• indianfoodforever.com

• thanksgiving.food.com

• chinese.food.com

• eatingchina.com

• allrecipes.com

• manjulaskitchen.com

• sanjeevkapoor.com

• italianfoodforever.com

• timesofindia.feedsportal.com (*)

• zeenews.com

• feedproxy.google.com (*)

• computerworld.com

• mashable.com

• feeds.appleinsider.com (*)

6

www.manaraa.com

• php.net

• w3schools.com

Here is the unique list of subdomain-domain names from which we gathered

testing data:

List of Subdomain-Domain Names Used for Testing Data - List 3

• chinese-food-recipes.net

• recipesindian.com

• italianfoodsrecipes.com

• italianhomerecipes.com

• timesofindia.feedsportal.com (*)

• zeenews.india.com

• feedproxy.google.com (*)

• mashable.com

• php.net

• developer.mozilla.org

Items marked with (*) are not actual webpages, but each serves as a pointer

to some other webpage. Such subdomain-domain names are NOT very descriptive

compared to other non-marked domains. For example, consider a feed URL

http://timesofindia.feedsportal.com/fy/8at2EtY0RyNP70tD/story01.htm

and a non-feed URL

http://www.zeenews.com/news/nation/india-china-to-see-growth-in-

n-energy-sector_732607.html.

It is very clear that the latter, the non-feed URL, is much more descriptive,

and some information can already be guessed about the content of the page from the

URL.

7

www.manaraa.com

To gather training data, 1,010 documents were determined that were appropri-

ate enough to be categorized under the categories listed in List 1. First the URL

for each of these these training documents was gathered. Initially, we wrote a utility

program that went through all 1,010 documents, and tried to gather text-content

from them. It was noticed that most documents’ text-content included much unnec-

essary data that would break the text-categorization engine and would not be of any

help to any feature selection algorithm. This data was not used. So, we decided to

manually go through all 1,010 training documents, and gathered text-content from

each document that best represented that document’s category. Below are 3 sample

documents with URL, title, meta-information, and text-content.

Sample document 1 - Category “Google”:

URL: http://mashable.com/2011/09/08/google-acquires-zagat/
Title: Google Acquires Zagat

Meta: Google has placed one of its biggest bets on location to date,

acquiring local reviews giant Zagat.

Text-content:

Google has placed one of its biggest bets on location to date,

acquiring local reviews giant Zagat.

Writing on the companys official blog, Marissa Mayer, Googles vice

president of Local, Maps and Location Services, wrote, Moving forward,

Zagat will be a cornerstone of our local offering delighting people

with their impressive array of reviews, ratings and insights, while

enabling people everywhere to find extraordinary (and ordinary)

experiences around the corner and around the world.

Zagat is far cry from the startups typically mentioned in the location

space. The company was founded 32 years ago and started as a printed

guide to restaurants, with Zagat Ratings becoming an industry standard.

More recently, however, Zagat has reinvented itself on the web and

with mobile apps, bringing it into competition with the likes of Foursquare

and Yelp.

8

www.manaraa.com

Location has been a tough nut for Google to crack. The company acquired

early location-based social networking service Dodgeball in 2005, only to

eventually shut it down and see founder Dennis Crowley leave to start

Foursquare. More recent attempts include Latitude, a largely forgotten

Foursquare competitor, and Hotpot, a recommendation engine thats baked

into Google Places. The company also appointed Mayer, one of its most

prominent executives, to lead its location efforts in late 2010.

While we dont have a price tag on the Zagat acquisition yet, its safe to

call the buy one of Googles biggest to date in the content business.

Heres a look at some of Googles largest acquisitions through the years:

Sample document 2 - Category “JavaScript”:

URL: http://www.w3schools.com/js/js_obj_string.asp
Title: JavaScript String object

Meta: No meta attached with this document.
Text-content:

The String object is used to manipulate a stored piece of text.

Try it Yourself - Examples

Return the length of a string

How to return the length of a string.

Style strings

How to style strings.

The toLowerCase() and toUpperCase() methods

How to convert a string to lowercase or uppercase letters.

The match() method

How to search for a specified value within a string.

Replace characters in a string - replace()

How to replace a specified value with another value in a string.

The indexOf() method

How to return the position of the first found occurrence of a

specified value in a string.

Complete String Object Reference

For a complete reference of all the properties and methods

9

www.manaraa.com

that can be used with the String object, go to our complete

String object reference.

The reference contains a brief description and examples of

use for each property and method!

String object

The String object is used to manipulate a stored piece of text.

Examples of use:

The following example uses the length property of the String

object to find the length of a string:

var txt="Hello world!";

document.write(txt.length);

The code above will result in the following output:

12

The following example uses the toUpperCase() method of the

String object to convert a string to uppercase letters:

var txt="Hello world!";

document.write(txt.toUpperCase());

The code above will result in the following output:

HELLO WORLD!

Sample document 3 - Category “Indian” (food):

URL: http://www.manjulaskitchen.com/2008/08/12/malai-kofta/
Title: Malai Kofta | Manjula’s Kitchen | Indian Vegetarian Recipes

| Indian Cooking Videos

Meta: Malai kofta is a delicious and rich main dish for any special

occasion.

Text-content:

Malai kofta is a delicious and rich main dish for any special occasion.

Recipe serves 4 to 6.

Ingredients:

Kofta:

10

www.manaraa.com

1 cup boiled mash potatoes

1 cup mash paneer

2 tablespoon minced cilantro (hara dhania)

1/2 teaspoon cumin seed (jeera)

1/4 teaspoon salt

1 small finally chopped green chili

For Batter:

2 tablespoon all purpose flour (maida, plain flour)

4 tablespoon water

Also needed:

Oil to fry

Gravy:

2 tablespoon oil

Generous pinch asafetida (hing)

1 teaspoon cumin seed (jeera)

2 medium tomatoes

1 tablespoon shredded ginger (adrak)

1 green chili

1 tablespoon coriander powder (dhania)

1/2 teaspoon turmeric (haldi)

1/4 teaspoon red chili powder

1 teaspoon all purpose flour (maida, plain flour)

1/4 cup cream

1/2 teaspoon salt (adjust to taste)

1/4 teaspoon garam masala

2 tablespoon minced cilantro (hara dhania)

Method

Kofta

Mix all the ingredients together for kofta,

With oiled hands, divide the mixture into 14 to 16 equal parts.

Make them in round balls.

Mix flour with about 4 tablespoons of water and mix well until

batter is smooth.

Heat the oil in a frying pan on medium high heat.

The frying pan should have at least 1 1/2 inch of oil. To check

if the oil is ready, just put one small piece of mix in the oil, it

should come up right away but not change color.

Dip the paneer balls in the batter one at a time and slowly drop

into the frying pan.

Turn them occasionally. Fry koftas until golden-brown all around.

Gravy:

11

www.manaraa.com

Blend the tomatoes, green chilies and ginger to make a puree. If

you prefer mild take the seeds out of green chili before blending.

Mix cream and flour and keep aside.

Heat the oil in a saucepan. Test the heat by adding one cumin

seed to the oil; if it cracks right away oil is ready.

Add the hing and cumin seeds.

Add the tomato puree, coriander powder, turmeric, red chili powder

and cook for about 4 minutes on medium heat.

Tomato mixture will start leaving the oil and will reduce to about half

in quantity.

Add milk and flour mix, salt and one cup of water and let it cook

covered for 7 to 8 minutes on medium heat.

Add the garam masala, salt and cilantro. Let it cook for another minute.

Add koftas as soon it comes to boil turn off the heat. Note: koftas will

expand to about 11/2 times, if you like more gravy this is the time to

add some more boiled water and adjust salt.

Koftas are very soft they should be added to the gravy when you are

ready to serve, otherwise koftas will break.

Call this text-content SELECTION DETAIL. Each webpage also has some other

helpful properties associated with it. Properties such as URL, meta, and title can

also help in categorization of the document. To gather these properties, a JavaScript-

PHP utility program was developed. This utility contained URL for each of the 1,010

documents. The utility would go through each item in the list, visit the webpage,

and bring back meta information, title, and URL of the document, and update the

database with this retrieved information.

The same strategy was used for test data. 338 documents were determined, and

URL for each document was collected. We manually went through 338 documents

to collect text-content, and using the same utility mentioned above, meta informa-

tion, title, and URL were retrieved for each document, and data was updated in the

database.

12

www.manaraa.com

2.4 Tagging Documents

Tagging of training documents is one of the most important part of text-

categorization, as it will help in training of the text-categorization engine. If done

incorrectly, text-categorization engine will give wrong results. Thus, all documents

that we gathered had to be tagged manually by the experts, Kandarp Dave and Dr.

Taghva. For each of the 1,010 training and 338 test documents, the JavaScript utility

mentioned above also included an array slot for the best possible Category in which

the document should belong. The following is the sample code:

Listing 1: Sample JavaScript URL-Category Array Code

1 var linkArray = new Array(

2 new Array(

3 ’http :// allrecipes.com/recipe/indian -chapati -bread/detail.aspx’,

4 ’2’

5),

6 new Array(

7 ’http :// allrecipes.com/recipe/indian -sweet -bread/detail.aspx’,

8 ’2’

9),

10 new Array(

11 ’http :// allrecipes.com/recipe/naan/detail.aspx’

12 ,’2’

13),

14 new Array(

15 ’http :// allrecipes.com/recipe/naan -bread/detail.aspx’,

16 ’2’

17),

18 new Array(

19 ’http :// www.php.net/manual/en/language.operators.string.php’,

20 ’22’

21),

22 new Array(

23 ’http :// www.php.net/manual/en/language.operators.array.php’,

24 ’22’

25),

26 new Array(

27 ’http :// www.php.net/manual/en/language.control -structures.php’,

28 ’22’

29),

30 new Array(

31 ’http :// www.php.net/manual/en/control -structures.elseif.php’,

32 ’22’

33)

13

www.manaraa.com

34);

As it can be seen from the sample code, documents of “allrecipes.com” belong

to category “2”, which is the primary key for category “Indian” food in the database.

Documents of “php.net” belong to category “22”, which is the primary key for cate-

gory “PHP” in the database. This is only sample code, but the linkArray contained

1,010 tagged-items for training. All 338 test documents were also manually tagged

the same way to determine if the results of the text-categorization algorithm matched

with what is expected.

2.5 Database Setup

As mentioned, we used a database for storage, specifically a MySQL database.

The name of the schema is “thesis”. In this database, we set up appropriate tables.

These tables, along with column names and their descriptions, are explained in each

section below.

14

www.manaraa.com

2.5.1 Table “folder”

“folder” table can be thought of as one that contains categories.

The columns are:

• PK FOLDER - A primary key column for table “folder”.

• NAME - Name of the category.

Figure 1: Table “folder”

15

www.manaraa.com

2.5.2 Table “selection”

“selection” table is the main table that contains all training documents. A

selection item can be thought of as a document.

The columns are:

• PK SELECTION - A primary key column for table “selection”.

• URL - The document’s Universal Resource Locator. Text in this column is used

in training of the text-categorization engine.

• TITLE - Title of the webpage. Text in this column is used in training of the

text-categorization engine.

• META - A webpage can have many meta tags. We use the value of content

attribute of the meta tag whose name attribute has the value “description”. For

example,

<meta name="description" content="This text will be extracted

and used for text-categorization." />

Text in this column is used in training of the text-categorization engine.

• SELECTION DETAIL - This column contains the actual text-content extracted

manually. Each row contains text-content of that document that can best help

the text-categorization engine. Text in this column is used in training of the

text-categorization engine.

16

www.manaraa.com

Figure 2: Table “selection”

17

www.manaraa.com

2.5.3 Table “selection folder”

“selection folder” table is a linking table that links training documents to cate-

gories.

The columns are:

• PK SELECTION FOLDER - A primary key column for table “selection folder”.

• FOLDER ID - ID of the folder to which this training document belongs.

• SELECTION ID - The ID of the document.

Figure 3: Table “selection folder”

18

www.manaraa.com

2.5.4 Table “selection test”

“selection test” is the table that contains all test documents. Again, a selection

item can be thought of as a document.

The columns are:

• PK SELECTION TEST - A primary key column for table “selection test”.

• URL - Text in the URL column is used in creating a test Bag of Words table to

test against using the text-categorization engine.

• TITLE - Text in the TITLE is the title of the webpage used in testing data.

This column is also used in creating a test Bag of Words table.

• META - Meta of the webpage, extracted the same way as it is done with training

data, and used in creating a test Bag of Words table.

• SELECTION DETAIL - Text for this column was extracted from webpages man-

ually for the purpose of testing. This column is used in creating a test Bag of

Words table.

19

www.manaraa.com

Figure 4: Table “selection test”

20

www.manaraa.com

2.5.5 Table “selection folder test”

“selection folder test” is a linking table that links testing documents to cate-

gories. When the text-categorization algorithm is run, the results from the algorithm

are compared to the documents in this table. This helps determine how many docu-

ments are true positives, false positives, and false negatives.

The columns are:

• PK SELECTION FOLDER TEST - A primary key column for table “selec-

tion folder test”.

• FOLDER ID - ID of the folder to which this test document belongs.

• SELECTION ID - The ID of the document.

Figure 5: Table “selection folder test”

21

www.manaraa.com

2.5.6 Table “bow”

“bow” is the Bag of Words table. Once each training document is cleaned, and

a word list is created, the word list is also cleaned and words are stemmed. This clean

list of words is put in “bow” table. Here words are not grouped, meaning duplicate

words can appear. This table is very helpful in determining document counts.

The columns are:

• PK BOW - A primary key column for table “bow”.

• WORD - This column contains a non-unique list of words. Meaning words may

be repeated.

• SELECTION ID - Document ID for the given word. Meaning, given some word,

w, this column will represent in which document ID that word belongs. If a

word, w, appears in 5 different documents, 5 different rows will be created.

• FOLDER ID - ID of the folder or category in which this document belongs.

22

www.manaraa.com

Figure 6: Table “bow”

23

www.manaraa.com

2.5.7 Table “doc bow raw”

“doc bow raw” contains a raw list of Bag of Words for training documents.

This table will have less or equal amount of rows (data) than the “bow” table. In

this table, words are grouped. Meaning, if the word “rice” appears in more than one

document in category named “Chinese”, then in the “doc bow raw” table, “rice” and

“Chinese” pair will appear only once. Column named “A” will represent in how many

documents the word appears in. Columns A, B, C, and D are the most important

columns of this table as from them, required values for feature selection algorithms

are calculated. The columns are:

• PK DOC BOW RAW - A primary key column for table “doc bow raw”.

• WORD - A list of words gathered from “bow” table, grouped by FOLDER ID.

• FOLDER ID - ID of the folder in which the word for this row belongs.

• A - Number of documents in FOLDER ID, C, containing WORD, w.

• B - Number of documents not in FOLDER ID, C, containing WORD, w.

• C - Number of documents in FOLDER ID, C, not containing WORD, w.

• D - Number of documents not in FOLDER ID, C, not containing WORD, w.

• INFORMATION GAIN - Calculated Information Gain values using the A, B,

C, and D columns.

• CHI SQUARE - Calculated Chi Square values using the A, B, C, and D columns.

• MUTUAL INFORMATION - Calculated Mutual Information values using the

A, B, C, and D columns.

24

www.manaraa.com

• NGL - Calculated Ng-Goh-Low coefficient values using the A, B, C, and D

columns.

• GSS - Calculated Galavotti-Sebastiani-Simi coefficient values using the A, B, C,

and D columns.

25

www.manaraa.com

Figure 7: Table “doc bow raw”

26

www.manaraa.com

2.5.8 Table “doc bow raw test”

“doc bow raw test” contains a raw list of Bag of Words for test documents. In

actual testing, this table would not be created. The only reason for creating this

table is so that we can run multiple tests on testing data easily. Creating a Bag of

Words for 338 documents for each test run would take much more time than creating

the BOW once, and reusing it for all tests. The columns are:

• PK DOC BOW RAW TEST - A primary key column for table “doc bow raw test”.

• SELECTION ID TEST - ID of the test document in which this word belongs.

• WORD - A cleaned word, which will help in testing of the text-categorization

engine and the feature selection algorithms.

27

www.manaraa.com

Figure 8: Table “doc bow raw test”

28

www.manaraa.com

2.6 Creating Bag of Words for Training Dataset - “bow” Table

Creating an initial bag of words list is an important step, as it will help in

determining in how many documents each cleaned word appears. But to do create

the list, we first need to determine what those cleaned words are. The next subsections

explain each step of the process in creating the Bag of Words, or the BOW, to be

inserted in the “bow” table.

2.6.1 The b8 Lexer

In this section, we will explain how the b8 lexer creates tokens, or BOW, that

helps in text-categorization. b8 is a Naive Bayesian Spam filter library written by

Tobias Leupold. We downloaded the library, and extracted the lexer file out of it

for our needs. Written in PHP, this lexer helps create tokens from a string of words.

We updated the original lexer by adding stopword removal capability. Stopwords, or

“overly common words”, are not helpful in categorization, as they cannot differentiate

between categories [6]. Words such as the, a, of, is, at, on and many more are con-

sidered stopwords. The stopwords file we used containd 573 stopwords. Forman also

tells us that stopwords are language and domain specific, and he says, “depending

on the classification task, they may run the risk of removing words that are essen-

tial predictors, e.g. the word ‘can’ is discriminating between ‘aluminum’ and ‘glass’

recycling” [6, 7].

Our version of the b8 lexer also uses Porter stemmer. “The Porter stemming

algorithm (or ‘Porter stemmer’) is a process for removing the commoner morphological

and inflexional endings from words in English. Its main use is as part of a term

29

www.manaraa.com

normalisation process that is usually done when setting up Information Retrieval

systems” [8]. Stemming of words is an important step in creating useful tokens. To

humans, words “cook”, “cooking”, and “cooked” mean the same action. Using three

different words in text-categorization for the same action can lead to wrong or bad

results. Porter stemming algorithm stems words and makes them all same. Meaning

three different words “cook”, “cooking”, and “cooked” would end up becoming one

word, “cook”. Porter stemming algorithm improves results of text-categorization.

George Forman also says that “the common practice of stemming or lemmatizing -

merging various word forms such as plurals and verb conjugations into one distinct

term - also reduces the number of features to be considered. It is properly, however,

a feature engineering option” [6].

The b8 lexer first receives the stopwords file as a list of stopword tokens. The

lexer has one function that takes in the string to be tokenized, call this string $text.

The lexer begins by modifying all punctuation from $text. Following punctuation

symbols are not removed, but are converted into a space.

~ ‘ ! @ # $ % ^ & * () - _ = + [{] } \ \ | \ ’ " ; : , < . > / ?

The reason for converting punctuation into spaces is so that the lexer would work

as intended. For example, removing punctuation from phrase “MySQL’s awesome”

would make the phrase “MySQLs awesome”. The stemming algorithm may or may

not remove the trailing ‘s’, which would cause problems for the categorization al-

gorithm. Replacing punctuation in the same phrase with a space would make it

“MySQL s awesome”. Letter ‘s’ by itself is a stopword, and would be removed, leav-

ing a descriptive phrase “MySQL awesome”.

30

www.manaraa.com

The b8 lexer also receives the document ID, and the category ID at initialization,

so that it can be determined for which document and category $text is being tokenized.

This information is passed to the lexer per document, so that at the end when a

BOW is created in the lexer, it knows what words belong to what document and

what category.

$text is then split using b8’s built in regular expressions.

Listing 2: b8 Regular Expressions

1 public $regexp = array(

2 ’ip’ => ’/([A-Za -z0 -9_\ -\.]+)/’,

3 ’raw_split ’ => ’/[\s,\.\/"\:;\| < >\ -_\[\]{}\+=\)\(*\&\^%]+/ ’,

4 ’html’ => ’/(<.+? >)/’,

5 ’tagname ’ => ’/(.+?)\s/’,

6 ’numbers ’ => ’/^[0 -9]+$/’

7);

From our example, “MySQL” and “awesome” would be the resulting words

from the lexer. These resulting words will be added to a static BOW array managed

by the b8 lexer itself. The token list, $tokens, which in our example contains words

“MySQL” and “awesome”, is passed to the function AddToBagOfWords. Here is the

code:

Listing 3: AddToBagOfWords Function

1 private function AddToBagOfWords ($tokens) {

2 $arr = array ();

3 foreach ($tokens as $token => $tokenCount) {

4 $arr[’token’] = $token;

5 $arr[’folder_id ’] = $this ->currentCategory;

6 $arr[’selection_id ’] = $this ->currentSelectionID;

7 array_push (self:: $bagOfWords , $arr);

8 }

9 }

The function AddToBagOfWords first creates an array called $arr. Then it

goes through all the tokens in $tokens, and adds the token, the current document ID,

31

www.manaraa.com

and the current category ID to $arr. $arr is then pushed to the global static array

$bagOfWords. Note that this approach does not create a unique list of words, but

also note that it does not create duplicates of word-folderID-selectionID. This is how

BOW is created for given $text data.

Explained above is the core functionality of the b8 lexer, and what it does. How

everything is tied together is explained in the next section.

2.6.2 Putting Code Together and Creating BOW

The b8 lexer is a core component that creates the BOW for given $text data.

However, it is the createBOW.php program, referred to as createBOW, that is respon-

sible for bringing data from the database, sending $text to the lexer, and handing

over the finished BOW list to the database-update utility for updating of the “bow”

table in the database.

createBOW ’s first responsibility is to retrieve data from the database. Specif-

ically, retrieve tagged documents for the purpose of training. createBOW begins by

running the following query:

Listing 4: Retrieve Documents SQL Query

select s.pk_selection , s.url , s.title , s.meta , s.selection_detail , f.*

from selection as s, folder as f, selection_folder as sf

where

s.pk_selection=sf.selection_id and

f.pk_folder=sf.folder_id limit 200 offset 0

This SQL query retrieves the document ID, the URL, the title, the meta, and

the text-content of 200 documents at a time from the “selection” table. The same

query also retrieves, for those documents, the category ID in which they belong. The

reason for retrieving 200 documents at a time is because not all 1,010 documents

32

www.manaraa.com

can fit in the memory at one time. Although, the offset can be increased by 200

automatically, since there were only 1,010 documents, we manually ran the query

updating the offset by 200 each iteration. The createBOW then retrieves the list of

stopwords and gives the list to the b8 lexer as shown below:

Listing 5: Retrieving and Setting Stopwords in the b8 Lexer

1 $stopwords = file_get_contents (’stopwords ’);

2 $stopwords = explode ("\r\n" , $stopwords);

3

4 $numStopwords = count($stopwords);

5 // \b for word -boundary "u" for UTF -8. "i" for insensitive.

6 for ($i=0 ; $i <$numStopwords ; $i++) {

7 $stopwords[$i] = "/\b" . $stopwords[$i] . "\b/ui";

8 }

9

10 $lexer = new b8_Lexer ();

11 $lexer ->SetStopwords ($stopwords);

Line 1 gets the contents of the “stopwords” file in the $stopwords string. On

line 2, the explode function breaks the $stopwords string into an array specified by

the delimiter string “\r\n”. The for loop prepares each stopword for a regular-

expression in the b8 lexer so that each stop word can be easily removed. In the loop,

each stopword is wrapped by ‘\b’ for word-boundary, and appended with the “ui”

flags for UTF-8 and CASE INSENSITIVE. Lexer is then initialized on line 10, and the

$stopwords are set in line 11.

Once the documents are retrieved and the lexer is initialized, the actual pro-

cessing for tokenizing of the documents can begin. Code is given below. The variable

$selections is a list of documents.

Listing 6: Tokenize Documents using the b8 Lexer

1 foreach ($selections as $selectionItem) {

2 $selectionID = $selectionItem[’pk_selection ’];

3 $category = $selectionItem[’PK_FOLDER ’];

4

33

www.manaraa.com

5 $url = strtolower($selectionItem[’url’]);

6 $title = strtolower($selectionItem[’title’]);

7 $meta = strtolower($selectionItem[’meta’]);

8 $selectionDetail = strtolower($selectionItem[’selection_detail ’]);

9

10 $strToTokenize = $url .’ ’. $title .’ ’. $meta .’ ’. $selectionDetail;

11 $lexer ->SetCategory ($category);

12 $lexer ->SetSelectionID ($selectionID);

13 $lexer ->get_tokens ($strToTokenize);

14 }

In the code given above, the loop goes through each document item, and stores

the document ID, the category ID, and the URL, the title, the meta information

and the text-content of the document in appropriate variables. Note that the URL,

the title, the meta, and the text-content are all first converted to lower case, so that

the lexer treats words with different cases in a uniform way. These fields are then

concatenated together into one string. Dot (.) is the concatenation operator in PHP.

The reason for making one string is because, I’m considering the URL, the title,

the meta, and the text-content as a document’s joined information. This is a näıve

approach, however. Better approach would be to assign each field different weights,

which would then improve categorization dramatically. Next, for each document, the

category ID and the document ID are set in the lexer. Then the get tokens function

is passed the concatenated string to be tokenized.

The get tokens tokenizes the string $strToTokenize and creates a BOW for those

tokens given the category ID, and the document ID. Once the loop is done, a BOW in

the lexer is fully created. The createBOW retrieves BOW from the lexer, and inserts

all the tokens in the “bow” table in the database. Code is given below. Notice that

the $tokenList is passed to the InsertBOW, which actually performs inserts to the

table.

34

www.manaraa.com

Listing 7: Get Tokens and Call InsertBOW to Save BOW

1 $tokenList = $lexer ->GetBagOfWords ();

2

3 $bowInsertFacade = new BOWInsertFacade ();

4 $bowInsertFacade ->InsertBOW ($tokenList);

Below is the InsertBOW function that creates and performs inserts on the

“bow” table.

Listing 8: InsertBOW Function

1 public function InsertBOW ($bow) {

2 $num = count($bow);

3

4 for ($i=0 ; $i <$num ; $i++) {

5 $query =

6 "insert into bow (word , selection_id , folder_id) values (

7 ’" . mysql_real_escape_string($bow[$i][’token’],$this ->dbLink) . "’,

8 ’" . $bow[$i][’selection_id ’] . "’,

9 ’" . $bow[$i][’folder_id ’] . "’

10)";

11

12 $result = mysql_query ($query , $this ->dbLink);

13 }

14 }

In the InsertBOW function above, line 2 first counts how many items need to

be inserted. The for-loop then runs through all the items, and builds an insert-query-

string, which is then run using the mysql query command of PHP. Here are a few

sample queries that were ran:

Listing 9: Sample InsertBOW Queries

1 insert into bow (word , selection_id , folder_id)

2 values (’chop’ , ’77’ , ’2’);

3 insert into bow (word , selection_id , folder_id)

4 values (’pepper ’ , ’77’ , ’2’);

5 insert into bow (word , selection_id , folder_id)

6 values (’bake’ , ’77’ , ’2’);

7 insert into bow (word , selection_id , folder_id)

8 values (’stir’ , ’77’ , ’2’);

9 insert into bow (word , selection_id , folder_id)

10 values (’photo’ , ’673’ , ’26’);

11 insert into bow (word , selection_id , folder_id)

12 values (’network ’ , ’673’ , ’26’);

35

www.manaraa.com

13 insert into bow (word , selection_id , folder_id)

14 values (’social ’ , ’673’ , ’26’);

15 insert into bow (word , selection_id , folder_id)

16 values (’cast’ , ’772’ , ’22’);

17 insert into bow (word , selection_id , folder_id)

18 values (’object ’ , ’772’ , ’22’);

19 insert into bow (word , selection_id , folder_id)

20 values (’string ’ , ’772’ , ’22’);

I have shown only 10 sample queries above. After running all insert queries to

the “bow” table, the “bow” table contained 88,230 rows.

Now the “bow” table is fully created, and has data that can be used. How data

from the “bow” table will be used is briefly explained in the next section.

2.6.3 Importance of the “BOW” Table

The “bow” table is ready to be used. There are two main purposes for using

the “bow” table: reusability, and counting of documents.

1. Reusability - Creating the “bow” table takes a long time. Once the “bow” table

is created, the training documents do not need to be touched again, because the

“bow” table contains all needed information. This saves a lot of time.

2. Counting of documents - For text-categorization, it is important to determine

in how many documents a word appears, or in how many documents the word

does not appear, and more variations explained in detail later. And because the

“bow” table contains ungrouped list of word - document ID - folder ID, counting

of documents can be easily queried right from the “bow” table without touching

the documents again. Again, saving a lot of time.

The “bow” table contains ungrouped list of word - document ID - folder ID.

Next, we have to create a list of words that grouped by word and category ID, and

36

www.manaraa.com

insert into a table that we call “doc bow raw”. Counts of the documents will be found

in this table as well. The procedure is extremely easy, as we have to run only one

SQL query. This procedure of creating the “doc bow raw” table is explained next.

2.7 Creating Bag of Words for Training Dataset - “doc bow raw” Table

The “doc bow raw” table has the following columns available: word, folder id,

multiple columns for different types of document counts, and columns available for

values for feature selection algorithms. The “bow” table had ungrouped data, whereas

the “doc bow raw” table has grouped data, grouped by word - folder ID. Because

we’re using MySQL, we can just run a simple query to insert data from the “bow”

table into the “doc bow raw” table. Again, reusability of the “bow” table becomes

very helpful.

To insert into the “doc bow raw” table from the “bow” table, we will run the

following simple query.

Listing 10: Query to Insert Into “doc bow raw” Table

1 insert into doc_bow_raw (word , folder_id)

2 select word , folder_id from bow

3 group by word , folder_id

A total of 20,419 records were inserted into the “doc bow raw” table from the

“bow” table. Even though inserting data this way is more correct than any other

way, one way would be to check integrity of these insertions is by checking against

another table that we know for fact contained grouped word - folder ID pairs.

This second table we checked against was actually created using PHP-MySQL

using the same way the “bow” table was created. The only difference would be

37

www.manaraa.com

to replace the AddToBagOfWords function explained above with the following new

function:

Listing 11: AddToBagOfWords Function

1 private function AddToBagOfWords ($tokens) {

2 foreach ($tokens as $token => $tokenCount) {

3

4 if (!isset(self:: $bagOfWords[$token])) {

5 self:: $bagOfWords[$token] = array ();

6 for ($i=0 ; $i <$this ->numCategories ; $i++) {

7 $category = $this ->categoryList[$i];

8 self:: $bagOfWords[$token][$category] = 0;

9 }

10 }

11 }

12 }

Here, the only difference is that, if the word (token) is already set in the $bagOf-

Words global static array, then the word is not added to the list again.

Now we have two different versions of the “doc bow raw” table. One using the

query, another using PHP-MySQL. To check correctness, we will run the following

query:

Listing 12: Checking Correctness of the Data in Table “doc bow raw” Inserted Using a Query on
the “bow” Table

1 select word , folder_id from doc_bow_raw

2 where (word , folder_id) not in

3 (

4 select word , folder_id from doc_bow_raw_PHP

5);

Running this query returned an empty set, as expected. This means, data

inserted using PHP and data inserted using the query on the “bow” table match

100%. Next, we create the bag of words for the test dataset.

38

www.manaraa.com

2.8 Creating Bag of Words for Test Dataset - “doc bow raw test” Table

As mentioned earlier in section 2.3, and 2.4, the test dataset was collected and

tagged the same was as the training dataset. The only difference between the training

and the testing dataset is that the BOW created for them has to go in different tables.

The BOW for the training data needs to go in the “doc bow raw” table, and the BOW

for the test data needs to go in the “doc bow raw test” table. There is no difference

in how the lexer builds the BOW for the training and the testing dataset. How the

BOW is created has already been explained, and exactly the same process applies to

the test dataset. How data for the test BOW is inserted is explained here.

The program createDocRawBOWTest is used to create BOW for test data. Here

a call is made to the lexer to get the BOW:

Listing 13: Get BOW from the b8 Lexer

1 $bow = $lexer ->GetBagOfWords ();

Then a call to another function is made to insert $bow with a given document

ID. If you recall, in listing 6, we talked about how the selectionID, or the document

ID, is retrieved from a $selectionItem. For each test document, the document ID

is retrieved almost the same way. This $selectionID along with $bow are passed to

the InsertBOWTest function. Note that pk selection test is a column in the table

selection test. Code is given below.

Listing 14: Get Document ID for Test Data

1 $selectionID = $selectionItem[’pk_selection_test ’];

2

3 $bowTest ->InsertBOWTest ($selectionID , $bow);

Below is the code that will insert word - document ID pairs in the “doc bow raw test”

39

www.manaraa.com

table.

Listing 15: InsertBOWTest Function

1 public function InsertBOWTest ($selectionID , &$bow) {

2 foreach ($bow as $word => $nothing) {

3

4 $word = mysql_real_escape_string ($word , $this ->dbLink);

5

6 $query =

7 "insert into doc_bow_raw_test

8 (selection_id_test , word)

9 values (

10 ’" . $selectionID . "’,

11 ’" . $word . "’

12)";

13

14 $result = mysql_query ($query , $this ->dbLink);

15 }

16 }

A total of 26,789 rows were inserted in the doc bow raw test table. Here are a

few sample queries that were ran:

Listing 16: Sample InsertBOWTest Queries

1 insert into doc_bow_raw_test

2 (selection_id_test , word)

3 values (

4 ’1’ , ’carrot ’

5);

6 insert into doc_bow_raw_test

7 (selection_id_test , word)

8 values (

9 ’1’ , ’potato ’

10);

11 insert into doc_bow_raw_test

12 (selection_id_test , word)

13 values (

14 ’1’ , ’stew’

15);

16 insert into doc_bow_raw_test

17 (selection_id_test , word)

18 values (

19 ’1’ , ’tbsp’

20);

21 insert into doc_bow_raw_test

22 (selection_id_test , word)

23 values (

24 ’1’ , ’cook’

25);

40

www.manaraa.com

26 insert into doc_bow_raw_test

27 (selection_id_test , word)

28 values (

29 ’1’ , ’food’

30);

Now that the training and the testing datasets have been inserted in proper

tables, we can proceed to the counting of the documents. Document counting is the

most crucial process for feature selection algorithms. Now we have to calculate the

A, B, C, D. Calculating these A, B, C, D values is explained in the next section.

41

www.manaraa.com

CHAPTER 3

COUNTING DOCUMENTS

Document counting is an important task in feature selection algorithms. Doc-

ument counts can help determine how important or not-important a word token is.

The next few sections explain the A, B, C, D values, what they are, and how they

are calculated.

3.1 The A, B, C, D Values

3.1.1 Explanation of the A, B, C, D Values

The A, B, C, D values have been mentioned many times so far in this thesis,

and they are the most important values in the feature selection algorithms we have

tested. Now, we will describe what each part of A, B, C, D means:

• A - the number of documents in category, C, containing word/token, t.

• B - the number of documents not in category, C, containing word/token, t.

• C - the number of document in category, C, not containing word/token, t.

• D - the number of documents not in category, C, not containing word/token, t.

[4]

These A, B, C, D values are used in all feature selection algorithms we’ve tested

in one way or another. These A, B, C, D values are stored in the “doc bow raw”

table, but the actual calculations happen on the “bow” table. Calculating them is a

major task, and how they are calculated is explained next.

42

www.manaraa.com

3.1.2 Calculating and Updating “doc bow raw” with the A, B, C, D Values

Calculating the A, B, C, D values first requires me to get word - folder ID

information from the “doc bow raw” table. The “doc bow raw” table has 20,419

records. Retrieving only 2 columns of 20,419 records works fine, as it can fit in

the memory. Because the actual document count calculations have to be done using

the “bow” table, our initial plan was to retrieve all 88,230 rows of the “bow” table

in PHP, and do the counts on this retrieved data in the memory itself. This way

turned out to be much slower. Another, faster, way was implemented by running the

count queries on the database side. This approach did not need the “bow” table to

be retrieved. Code for the loop that goes thorough each word - category ID, calls

CalculateABCDValues and UpdateABCDValues is given below:

Listing 17: Loop to Calculate and Update A B C D Values

1 foreach ($resultList as $key => $details) {

2 $word = $details[’word’];

3 $folder = $details[’folder ’];

4

5 $values = $dbDocBOWRaw ->CalculateABCDValues ($word , $folder);

6

7 $dbDocBOWRaw ->UpdateABCDValues ($word , $folder , $values);

8

9 }

The loop above goes thorough each word - category ID and calls the Calculate-

ABCDValues function, passing word and category ID. Code for the CalculateABCD-

Values function is given below:

Listing 18: CalculateABCDValues Function

1 public function CalculateABCDValues ($word , $folderID) {

2 $word = mysql_real_escape_string($word ,$this ->dbLink);

3 $folderID = mysql_real_escape_string($folderID ,$this ->dbLink);

4

5 $query =

43

www.manaraa.com

6 "select count (0) as A from (

7 select distinct selection_id

8 from bow

9 where folder_id=’" . $folderID . "’ and word=’" . $word . "’

10) as tbl";

11 $row = mysql_fetch_assoc (mysql_query ($query , $this ->dbLink));

12 $A = $row[’A’];

13

14 $query =

15 "select count (0) as B from (

16 select distinct selection_id

17 from bow

18 where folder_id <>’" . $folderID . "’ and word=’" . $word . "’

19) as tbl";

20 $row = mysql_fetch_assoc (mysql_query ($query , $this ->dbLink));

21 $B = $row[’B’];

22

23 $query =

24 "select count (0) as C from (

25 select distinct selection_id

26 from bow

27 where folder_id=’" . $folderID . "’ and word <>’" . $word . "’

28) as tbl";

29 $row = mysql_fetch_assoc (mysql_query ($query , $this ->dbLink));

30 $C = $row[’C’];

31

32 $query =

33 "select count (0) as D from (

34 select distinct selection_id

35 from bow

36 where folder_id <>’" . $folderID . "’ and word <>’" . $word . "’

37) as tbl";

38 $row = mysql_fetch_assoc (mysql_query ($query , $this ->dbLink));

39 $D = $row[’D’];

40

41 $values = array ();

42 $values[’A’] = $A;

43 $values[’B’] = $B;

44 $values[’C’] = $C;

45 $values[’D’] = $D;

46 return $values;

47 }

In the CalculateABCDValues function, the $folderID variable represents the ID

of the category. Notice that all count queries are done on the “bow” table.

Explanation of SQL query for ‘A’ (lines 6-10): First get all document ID where

category ID matches $folderID and word matches $word. Then do a count of these

documents, and store the result in variable $A.

44

www.manaraa.com

Explanation of SQL query for ‘B’ (lines 15-19): First get all document ID where

category ID does NOT match $folderID and word matches $word. Then do a count

of these documents, and store the result in variable $B.

Explanation of SQL query for ‘C’ (lines 24-28): First get all document ID where

category ID matches $folderID and word does NOT match $word. Then do a count

of these documents, and store the result in variable $C.

Explanation of SQL query for ‘D’ (lines 33-37): First get all document ID where

category ID does NOT match $folderID and word does NOT match $word. Then do

a count of these documents, and store the result in variable $D.

Once the variables $A, $B, $C, and $D are set, store them in $values array, and

return this array.

Then, as shown in Listing 17, the function UpdateABCDValues is called, and

is passed the word, the category ID, and the $values array to be updated in the

“doc bow raw” table. Code for the function UpdateABCDValues is given below:

Listing 19: UpdateABCDValues Function

1 public function UpdateABCDValues (&$word , &$folder , &$values) {

2 $a = $values[’A’];

3 $b = $values[’B’];

4 $c = $values[’C’];

5 $d = $values[’D’];

6

7 $query =

8 "update doc_bow_raw set

9 A=’" . $a ."’,

10 B=’" . $b . "’,

11 C=’" . $c . "’,

12 D=’" . $d . "’

13 where

14 word=’" . mysql_real_escape_string($word ,$this ->dbLink) . "’ and

15 folder_id=’" . $folder . "’";

16 $result = mysql_query ($query , $this ->dbLink);

17 }

45

www.manaraa.com

As mentioned earlier, calculating these A, B, C, D values is a big task. Even

with indexed columns in all the tables, calculating and updating these A, B, C, D

values in the “doc bow raw” table took more than 30 minutes on a computer, which

has the following configuration:

• Processor - 2.2 GHz Intel Core i7

• Memory - 4 GB 1333 MHz DDR3

• HD - 500 GB. 468.35 GB Available.

These A, B, C, D values, however, have to be calculated only once for training.

Once these values are stored in the table, they do not need to be modified unless

more training needs to be done. The training and the testing datasets used for

this thesis are very, very small. Also, as mentioned in section 2.2, we have only 9

categories, which is a very small number of categories. In the real world, there could

be hundreds of categories, and more categories would have to be included dynamically.

New documents have to be included in the training set, and so, training would have to

be done dynamically as well. In such large-scale cases, a very efficient system would

have to be developed where these document counts could be updated much faster!

This area could be further researched. For now, we can move on to explaining the

core of this thesis, the feature selection algorithms.

46

www.manaraa.com

CHAPTER 4

FEATURE SELECTION ALGORITHMS

Six different feature selection algorithms were implemented. This section de-

scribes why to use a feature selection algorithm, and describes each algorithm.

4.1 Why Use Feature Selection?

Much research has been done on why feature selection is important and should

be used when categorizing textual data. Shang, Huang, Zhu, Lin, Qu, Wang state

the following:

A major problem of text categorization is the high dimensionality of the

feature space. For many learning algorithms, such high dimensionality is

not permitted. Moreover most of these dimensions are not relative to text

categorization; even some noise data hurt the precision of the classifier.

[2]

It is not practical to use all features gathered from the training documents to

use in text-categorization. “Reduction of the features used for the representation

of documents is an absolute requirement for using most of the machine learning

algorithms.” [9]

For this reason, one or more feature selection techniques have to be used, so that

by using less amount of features/tokens/words, new documents can be categorized

easily, faster, and by using less computation power.

Feature selection is “selecting a subset of the features available for describing

47

www.manaraa.com

the data” [5], or in other words it is a method to reduce “the dimensionality of the

dataset by removing features that are considered irrelevant for the classification” [9].

There are many benefits to using feature selection. The benefits of using feature

selection are described below:

1. Simplifying or speeding up computations with only little loss in classification

quality. [5]

2. Reduce dimensionality of feature space and improve the efficiency, performance

gain, and precision of the classifier. [2, 10, 9]

3. Improves classification effectiveness, computational efficiency, and accuracy. [10,

1]

4. Helps remove non-informative and noisy features and helps reduce the feature

space to a manageable size. [11]

5. Helps keep computational requirements and dataset size small, especially for

those text-categorization algorithms that do not scale with the feature set size.

[9]

George Forman describes that,

The overall feature selection procedure is to score each potential feature

according to a particular feature selection metric, and then take the best k

features. Scoring involves counting the occurrences of a feature in training

positive- and negative-class training examples separately, and then comput-

ing a function of these.

48

www.manaraa.com

[6]

What feature selection algorithms were used, and their explanations are given

next.

4.2 Feature Selection Algorithm Explanations

This section describes the feature selection algorithms we used. The algorithms

are: Document Frequency, Information Gain, Mutual Information, Chi Square, NGL

(Ng-Goh-Low) Coefficient, and GSS (Galavotti-Sebastiani-Simi) Coefficient. Each

subsection below explains an algorithm.

4.2.1 Document Frequency - Explanation

Document frequency is a very simple feature selection method. Document fre-

quency for a term can be found by counting the number of documents in which a

term/feature occurs. [1, 10, 3]. Document frequency assumes that rare terms are

“non-informative for category prediction, or non-influential in global performance”

[3], and “terms with higher document frequency are more informative for classifica-

tion” [1].

Document frequency is already calculated, because we have already calculated

the A, B, C, D values, so document frequency is:

DF = A

49

www.manaraa.com

4.2.2 Information Gain - Explanation

Information gain value measures “the number of bits of information obtained

for category prediction by knowing presence of absence of a term in a document”.

[3, 1, 10].

According to Mukras et al., “the idea behind IG is to select features that reveal

the most information about the classes” [12].

Information gain values were calculated as follows:

IG(t, c) =
∑

c∈{ci,c̄i}

∑
t∈{tk,t̄k}

P (t, c) · log P (t, c)

P (t)P (c)

[9]

4.2.3 Mutual Information - Explanation

Mutual information method assumes that the “term with higher category ratio

is more effective for classification” [1].

Mutual information can be calculated as follows using our already calculated A,

B, C, D values:

MI = log
A×N

(A+ C)(A+B)

[1]

Here, A is the number of documents that contain the term, t, and also belong

to category, c. B is the number of documents that contain the term, t, but do not

belong to category, c. C is the number of documents that do not contain the term, t,

but belong to category, c. N is the number of training documents. [1, 3].

4.2.4 Chi Square - Explanation

50

www.manaraa.com

Chi square measures the lack of independence between a term, t, and the cate-

gory, c [10, 3].

Chi square, χ2, can be calculated as follows, again, using our previously calcu-

lated A, B, C, D values:

χ2 =
N(AD − CB)2

(A+ C)(B +D)(A+B)(C +D)

[4]

Again, A is the number of documents that contain the term, t, and also belong

to category, c. B is the number of documents that contain the term, t, but do not

belong to category, c. C is the number of documents that do not contain the term,

t, but belong to category, c. D is the number of documents that do not contain the

term, t, and do not belong to category, c. N is the number of training documents.

[4].

4.2.5 NGL (Ng-Goh-Low) Coefficient - Explanation

NGL Correlation Coefficient (CC) is a variant of χ2 metric. A positive NGL CC

value indicates that word, w, is a possible feature word and correlates with category,

c, while a negative value means word, w, correlates with category, c̄. The NGL CC

value can be computed as follows:

NGL =

√
Tr · [P (tk, ci) · P (t̄k, c̄i)− P (tk, c̄i) · P (t̄k, ci)]√

P (tk) · P (t̄k) · P (ci) · P (c̄i)

[9]

51

www.manaraa.com

Which we can easily compute using the A, B, C, D values as:

NGL =

√
N · (AD − CB)√

(A+ C)(B +D)(A+B)(C +D)

Uchyigit and Ma tell us that, “the NGL coefficient is reported to have better perfor-

mance than χ2” [13] They say so, because NGL “selects words that correlate with c

(i.e. are positive) and does not select those words which correlate with c̄, unlike the

χ2 statistic” [13].

4.2.6 GSS (Galavotti-Sebastiani-Simi) Coefficient - Explanation

Galavotti-Sebastiani-Simi propose a simplified χ2 statistic. They remove the

√
N factor, and the denominator completely. They describe the

√
N factor as being

unnecessary. They also remove the denominator,
√

(A+ C)(B +D)(A+B)(C +D),

by giving the reason that the denominator gives high Correlation Coefficient score to

rare words, and rare categories [13]. The GSS CC value can be computed as follows:

GSS = P (tk, ci) · P (t̄k, c̄i)− P (tk, c̄i) · P (t̄k, ci)

Which we can easily compute using the A, B, C, D values as:

GSS = AD − CB

Now that we have understanding of these feature selection algorithms, we can

move on to implementation. Next chapter describes how values of these algorithms

were calculated.

52

www.manaraa.com

CHAPTER 5

IMPLEMENTATION OF FEATURE SELECTION ALGORITHMS

This section gives implementation details for each algorithm described above.

Before we begin implementation details on any algorithm, we will first look at a

common task that is required for all algorithms, which is to retrieve the A, B, C,

D values from the database. A utility DBDocBowRaw is created, which includes

many functions related to the “doc bow raw” table, and also contains the function

RetrieveABCDValues. Implementation of this function is given below, which is used

to get the A, B, C, D values out of the database and into the application.

Listing 20: RetrieveABCDValues Function

1 public function RetrieveABCDValues () {

2 $query =

3 "select pk_doc_bow_raw , a, b, c, d from doc_bow_raw";

4

5 $result = mysql_query ($query , $this ->dbLink);

6

7 if ($result) {

8 $list = array ();

9 while ($row = mysql_fetch_assoc ($result)) {

10 $pk = $row[’pk_doc_bow_raw ’];

11 if (!isset($list[$pk])) {

12 $list[$pk] = array ();

13 }

14 unset($row[’pk_doc_bow_raw ’]);

15 $list[$pk] = $row;

16 }

17

18 return $list;

19 }

20 else {

21 return false;

22 }

23 }

The while loop (lines 9-16) fetches rows from the resource, $result. The purpose

of the code inside the while loop is to create a new list, called $list, with keys being

53

www.manaraa.com

the primary key values of the “doc bow raw” table. Meaning, given the following

array data-structure:

Listing 21: Sample RAW Array Result

1 Array (

2 [0] => Array (

3 [pk_doc_bow_raw] => 404

4 [a] => 2

5 [b] => 9

6 [c] => 14

7 [d] => 165

8)

9 [1] => Array (

10 [pk_doc_bow_raw] => 405

11 [a] => 4

12 [b] => 10

13 [c] => 13

14 [d] => 76

15)

16 [2] => Array (

17 [pk_doc_bow_raw] => 406

18 [a] => 2

19 [b] => 12

20 [c] => 44

21 [d] => 165

22)

23)

The while loop will convert the structure into:

Listing 22: Sample Converted Array Result

1 Array (

2 [404] => Array (

3 [a] => 2

4 [b] => 9

5 [c] => 14

6 [d] => 165

7)

8 [405] => Array (

9 [a] => 4

10 [b] => 10

11 [c] => 13

12 [d] => 76

13)

14 [406] => Array (

15 [a] => 2

16 [b] => 12

17 [c] => 44

18 [d] => 165

54

www.manaraa.com

19)

20)

Note that pk doc bow raw were dropped from each sub-array, and became keys

in the array. The following code shows how we call the RetrieveABCDValues and

retrieve the A, B, C, D values.

Listing 23: Calling RetrieveABCDValues Function

1 $dbDocBOWRaw = new DBDocBOWRaw ();

2 $dbr = $dbDocBOWRaw ->RetrieveABCDValues ();

Now that we have the A, B, C, D values stored in the variable $dbr for our

feature selection methods, we can begin implementation details for each algorithm.

Let us begin with Document Frequency.

5.1 Document Frequency - Calculation Implementation Details

We have already calculated document frequency values as the ‘A’ column in the

“doc bow raw” table in the database. No further calculations are necessary. Let us

look at information gain next.

55

www.manaraa.com

5.2 Information Gain - Calculation Implementation Details

Now that we have the A, B, C, D values in the $dbr variable, we can loop through

all items in $dbr and calculate information gain using the IG formula. Here’s the code

to calculate and update the information gain values:

Listing 24: Calculate and Update Information Gain Values

1 foreach ($dbr as $pk => $counts) {

2 $a = $counts[’a’];

3 $b = $counts[’b’];

4 $c = $counts[’c’];

5 $d = $counts[’d’];

6

7 $t_c = $a * log ($a/(($a+$c)*($a+$b)) , 2);

8 $tBar_c = $b * log ($b/(($b+$d)*($a+$b)) , 2);

9 $t_cBar = $c * log ($c/(($a+$c)*($c+$d)) , 2);

10 $tBar_cBar = $d * log ($d/(($b+$d)*($c+$d)) , 2);

11

12 $dbr[$pk][’ig’] = $t_c + $tBar_c + $t_cBar + $tBar_cBar;

13 }

14

15 $dbDocBOWRaw ->UpdateInformationGain ($dbr);

The code above goes through each item in $dbr, and calculates the IG values

according to the formula, and puts the result back in $dbr. At the end, UpdateInfor-

mationGain is called, and is passed $dbr by reference to update the information gain

values in the database. The code below shows the UpdateInformationGain function.

Listing 25: UpdateInformationGain Function

1 public function UpdateInformationGain (&$dbr) {

2 foreach ($dbr as $pk => $details) {

3 $query =

4 "update doc_bow_raw

5 set information_gain=’" . $details[’ig’] . "’

6 where pk_doc_bow_raw=’" . $pk . "’";

7 $result = mysql_query ($query , $this ->dbLink);

8 }

9 }

56

www.manaraa.com

5.3 Mutual Information - Calculation Implementation Details

Code is given below to calculate and update the mutual information values from

the $dbr variable. Because the MI formula requires the number of training documents,

a variable, $numTrainingDocuments, is created with the value of 1, 010.

Listing 26: Calculate and Update Mutual Information Values

1 $numTrainingDocuments = 1010;

2 foreach ($dbr as $pk => $counts) {

3 $A = $counts[’a’];

4 $B = $counts[’b’];

5 $C = $counts[’c’];

6 $mi = log(($A*$numTrainingDocuments) / (($A+$C)*($A+$B)) ,2);

7

8 $dbDocBOWRaw ->UpdateMIValue ($pk , $mi);

9 }

The function UpdateMIValue is given below that updates the mutual informa-

tion values in the database. Note that this function is executed at every iteration in

the loop given above.

Listing 27: UpdateMIValue Function

1 // Passed by reference.

2 public function UpdateMIValue (&$pk , &$mi) {

3 $query =

4 "update " . $this ->table . " set mutual_information=’" . $mi . "’

5 where pk_doc_bow_raw=’" . $pk . "’";

6 $result = mysql_query ($query , $this ->dbLink);

7 }

57

www.manaraa.com

5.4 Chi Square - Calculation Implementation Details

Code is given below to calculate and update the χ2 values from the $dbr variable.

Again, $numTrainingDocuments is used with the value of 1, 010, as the χ2 formula

requires the number of training documents..

Listing 28: Calculate and Update χ2 Values

1 $numTrainingDocuments = 1010;

2 foreach ($dbr as $pk => $counts) {

3 $A = $counts[’a’];

4 $B = $counts[’b’];

5 $C = $counts[’c’];

6 $D = $counts[’d’];

7 $chiValue = ($numTrainingDocuments * pow($A*$D-$C*$B ,2))

8 / (($A+$C)*($B+$D)*($A+$B)*($C+$D));

9

10 $dbDocBOWRaw ->UpdateChiValue ($pk , $chiValue);

11 }

The function UpdateChiValue is given below that updates the χ2 values in the

database. Note that this function is also executed at every iteration in the loop given

above.

Listing 29: UpdateChiValue Function

1 // Passed by reference.

2 public function UpdateChiValue (&$pk , &$chiValue) {

3 $query =

4 "update " . $this ->table . " set chi_square=’" . $chiValue . "’

5 where pk_doc_bow_raw=’" . $pk . "’";

6 $result = mysql_query ($query , $this ->dbLink);

7 }

58

www.manaraa.com

5.5 NGL - Calculation Implementation Details

Code is given below to calculate and update the NGL coefficients from the $dbr

variable. The number of training documents is also required to calculate the NGL

coefficients. So, a variable, $numTrainingDocuments, is created with the value of

1, 010.

Listing 30: Calculate and Update NGL Coefficients

1 $numTrainingDocuments = 1010;

2 foreach ($dbr as $pk => $counts) {

3 $A = $counts[’a’];

4 $B = $counts[’b’];

5 $C = $counts[’c’];

6 $D = $counts[’d’];

7 $ngl = (sqrt($numTrainingDocuments) * ($A*$D -$C*$B))

8 / sqrt(($A+$C)*($B+$D)*($A+$B)*($C+$D));

9

10 $dbDocBOWRaw ->UpdateNGLValue ($pk , $ngl);

11 }

The function UpdateNGLValue is given below that updates the NGL coefficients

in the database. Again, this function is executed at every iteration in the loop given

above.

Listing 31: UpdateNGLValue Function

1 // Passed by reference.

2 public function UpdateNGLValue (&$pk , &$ngl) {

3 $query =

4 "update " . $this ->table . " set ngl=’" . $ngl . "’

5 where pk_doc_bow_raw=’" . $pk . "’";

6 $result = mysql_query ($query , $this ->dbLink);

7 }

59

www.manaraa.com

5.6 GSS - Calculation Implementation Details

Code is given below to calculate and update the GSS coefficients from the $dbr

variable.

Listing 32: Calculate and Update GSS Coefficients

1 foreach ($dbr as $pk => $counts) {

2 $A = $counts[’a’];

3 $B = $counts[’b’];

4 $C = $counts[’c’];

5 $D = $counts[’d’];

6 $gss = ($A*$D -$C*$B);

7

8 $dbDocBOWRaw ->UpdateGSSValue ($pk , $gss);

9 }

The function UpdateGSSValue is given below that updates the GSS coefficients

in the database. Again, this function is executed at every iteration in the loop given

above.

Listing 33: UpdateGSSValue Function

1 // Passed by reference.

2 public function UpdateGSSValue (&$pk , &$gss) {

3 $query =

4 "update " . $this ->table . " set gss=’" . $gss . "’

5 where pk_doc_bow_raw=’" . $pk . "’";

6 $result = mysql_query ($query , $this ->dbLink);

7 }

We have calculated all needed values using our feature selection algorithms.

Now, we run our text categorization engine and determine which feature selection

algorithms can give us the best results. The next chapter reports the results.

60

www.manaraa.com

CHAPTER 6

RESULTS

6.1 Using All Features

Recall that we already created the “doc bow raw test” table from the test data.

This same table is used in testing. We also calculated precision, recall, and F1 values

to determine how accurately documents were categorized when using different feature

selection methods. We can calculate recall and precision as follows:

recall =
TP

TP + FN

precision =
TP

TP + FP

Here, TP is the number of true-positives, FP is the number of false-positives,

and FN is the number of false-negatives.

A true-positive is when a human and the categorization algorithm both agree

that a document belongs in the exact same category. For example, if we believe a

document is about “Indian” food recipe, then the categorizer must also give “Indian”

category as the result.

A false-positive is when a human knows that a document must belong to some

category, CA, but the categorizer gives category, CB, as the result. Both results

belong to some parent category, C, but category CA 6=CB. For example, a human

knows that a document is about “Indian” food recipe, and categorizes that document

into “Indian” category, but the categorizer puts the same document into “Italian”

food recipe category. Here, “Indian” and “Italian” categories are close to each other,

because they both can belong to a parent category, Food. This is a case of false-

61

www.manaraa.com

positive.

A false-negative is when a human knows that a document must belong to some

category, X, but the categorizer gives a completely different category, Y, as the result.

Both the human and the categorizer completely disagree on the result. This can

happen, for example, when a human knows that a document is a technology related

article, and, say, he or she believes, the document must belong to the “Google”

category, but categorizer says the document is about “Chinese” food recipe, and

categorizes the same document into “Chinese” category. Even though this is a bit

extreme example, categorizer can give terribly wrong results.

F1 is the harmonic mean of precision and recall and is calculated as follows:

F1 =
2

1
precision

+ 1
recall

The following results were achieved when we categorized 338 test documents.

Here all 20,419 features from the “doc bow raw” table were used for calculation.

Meaning, feature selection algorithms were used more as a score than as feature

selection.

62

www.manaraa.com

Method Total TP FP FN Precision Recall F1

DF 338 232 106 0 0.686 1 0.814

IG 338 276 56 6 0.831 0.979 0.899

χ2 338 313 25 0 0.926 1 0.962

MI 338 299 38 1 0.887 0.997 0.939

MI (*) 338 304 34 0 0.899 1 0.947

NGL 338 301 37 0 0.891 1 0.942

NGL (*) 338 309 29 0 0.914 1 0.955

GSS 338 253 85 0 0.749 1 0.856

Algorithms marked (*) are optimal runs. Meaning, not all features were used,

but rather only a small set of features from 20,419 total features.

The 6 FN of the IG method are listed below:

Listing 34: False-Negatives of Information Gain

1 Actual: India Result: Facebook

2 Actual: India Result: Apple

3 Actual: India Result: Facebook

4 Actual: JavaScript Result: Google

5 Actual: JavaScript Result: Google

6 Actual: JavaScript Result: Facebook

The FN of the MI (non-optimal) method is listed below:

Listing 35: False-Negatives of Mutual Information

1 Actual: India Result: Google

Our main purpose was to get as best recall values as possible, as to avoid false-

negatives. For most methods, we got recall of 1. Meaning, our results were what

we wanted. However, here, we used all 20,419 features, which is not what we should

have used. The real purpose of any feature selection algorithm is to score features and

63

www.manaraa.com

keep the most informative features, and remove all other non-informative features.

Next, we address this issue.

6.2 Using Selected Features

Our previous results used all 20,419 features, and we wanted to improve on this

count. In other words, we wanted to use as less features as possible, and still maintain

a high number of TP values. In this section, we address this very issue.

For each feature selection algorithm, we determined what was the min-value

and the max-value of that algorithm. Then, we used a loop for each feature selection

method from an approximate min value to an approximate max value, and selected

feature only in that range, and ran the categorization algorithm, and this gave us

results on how many TP it found.

Below we explain min to max range for each algorithm, and show the TP results

after selecting only partial features. Keep in mind that we have a total of 20,419

features, and 338 test documents.

6.2.1 Document Frequency - Selecting Partial Features

We determined document frequency’s range to be from 0 to 160. We, then,

ran a loop from 0 to 160 and incremented the cutoff value by 10. Here, for example,

cutofff value of 20 would mean that, a feature has to appear in at least 20 documents.

In other words, select only those feature that are in 20 or more documents. Below

are the sample results:

64

www.manaraa.com

Cutoff # of Features Used # of Features Removed TP

0 20,419 0 232

10 1,714 18,705 218

20 729 19,690 201

30 412 20,007 182

40 261 20,158 179

50 175 20,244 164

60 127 20,292 135

Document frequency is not a very useful feature selection algorithm. But even

for a simple feature selection algorithm, such as DF, after removing 18, 705 features,

we still got TP of 218. Meaning even after removing 18, 705 features, we lost only 14

TP.

Next, we look at how well information gain performs.

6.2.2 Information Gain - Selecting Partial Features

Information gain values ranged from −15, 000 to 0. Below are the two sample

results we obtained:

Cutoff # of Features Used # of Features Removed TP

-15,000 20,419 0 276

-10,000 6,184 14,235 276

Notice that we still have the same number of TP after removing 14, 235 features.

6.2.3 Mutual Information - Selecting Partial Features

65

www.manaraa.com

Mutual information values ranged from −6 to 4, and we ran the loop by incre-

menting the cutoff value by 0.5. Full results are listed below:

Cutoff # of Features Used # of Features Removed TP

-6 20,419 0 299

-5.5 20,418 1 299

-5 20,415 4 299

-4.5 20,398 21 299

-4 20,374 45 298

-3.5 20,322 97 298

-3 20,228 191 298

-2.5 20,043 376 297

-2 19,770 649 299

-1.5 19,398 1,021 300

-1 18,849 1,570 300

-0.5 18,020 2,399 302

0 16,953 3,466 303

0.5 15,382 5,037 303

1 13,509 6,910 304

1.5 11,439 8,980 303

2 9,415 11,004 297

2.5 7,374 13,045 286

3 4,921 15,498 188

3.5 955 19,464 56

Using features with positive mutual information value yield better results. The

66

www.manaraa.com

point here to notice is that, even after removing 6, 910 feature, we got even better

results. Moreover, when we used all 20,419 features, we got 299 TP. But when we

removed 11, 004 features (cutoff 2), we got 297 TP.

6.2.4 χ2 - Selecting Partial Features

Recall from our previous results that we got 313 TP. For our case, χ2 is the best

feature selection algorithm. Next, we wanted to see how well χ2 performed when we

removed as many features as possible. We determined the range of χ2 values to be

from 0 to about 400. We ran the loop, and incremented the cutoff by 10. The results

we obtained are shown below:

Cutoff # of Features Used # of Features Removed TP

0 20,419 0 313

10 4,916 15,503 313

20 2,039 18,380 311

30 1,270 19,149 308

40 841 19,578 306

50 635 19,784 306

60 480 19,939 304

70 369 20,050 301

80 310 20,109 305

90 264 20,155 304

100 218 20,201 303

67

www.manaraa.com

Cutoff # of Features Used # of Features Removed TP

110 186 20,233 303

120 161 20,258 302

130 138 20,281 306

140 123 20,296 300

150 106 20,313 302

160 95 20,324 300

170 90 20,329 297

180 80 20,339 302

190 73 20,346 301

200 65 20,354 303

210 61 20,358 302

220 52 20,367 283

230 47 20,372 282

240 43 20,376 273

250 36 20,383 231

260 33 20,386 231

270 29 20,390 228

280 28 20,391 231

290 26 20,393 213

300 26 20,393 213

68

www.manaraa.com

Cutoff # of Features Used # of Features Removed TP

310 24 20,395 213

320 21 20,398 184

330 19 20,400 184

340 17 20,402 175

350 16 20,403 145

360 12 20,407 120

370 11 20,408 120

380 9 20,410 66

390 9 20,410 66

Again, χ2 feature selection algorithm performed very well even with less amount

of features. Even when we removed 15, 503 features, and used only 4, 916 features,

results (TP) did not change. The number of TP stay above 300 even when we use

only 61 features.

6.2.5 NGL Coefficient - Selecting Partial Features

NGL was another algorithm that also performed well. NGL values ranged from

−7 to 21, and we ran the loop by incrementing the cutoff by 1. Below are the results:

69

www.manaraa.com

Cutoff # of Features Used # of Features Removed TP

-7 20,419 0 301

-6 20,418 1 301

-5 20,409 10 301

-4 20,358 61 303

-3 20,223 196 305

-2 19,809 610 305

-1 18,877 1,542 307

0 17,061 3,358 307

1 14,163 6,256 306

2 10,737 9,682 306

3 6,078 14,341 309

4 2,572 17,847 305

5 1,540 18,879 304

6 995 19,424 296

7 642 19,777 295

8 443 19,976 281

9 306 20,113 298

10 218 20,201 298

11 157 20,262 304

12 116 20,303 300

70

www.manaraa.com

Cutoff # of Features Used # of Features Removed TP

13 91 20,328 300

14 70 20,349 304

15 50 20,369 282

16 36 20,383 231

17 26 20,393 213

18 20 20,399 184

19 12 20,407 120

20 9 20410 66

As can be easily seen from these results, NGL performs almost as well as the

χ2 algorithm.

6.2.6 GSS Coefficient - Selecting Partial Features

GSS coefficient values ranged from −48, 754 to 123, 981, and the loop was ran

with the cutoff incremented by 10, 000. Here are the results:

71

www.manaraa.com

Cutoff # of Features Used # of Features Removed TP

-48754 20419 0 253

-38754 20416 3 253

-28754 20398 21 253

-18754 20345 74 252

-8754 20096 323 253

1246 7141 13278 250

11246 879 19540 236

21246 393 20026 220

31246 212 20207 201

41246 132 20287 192

51246 94 20325 176

61246 70 20349 169

71246 50 20369 135

81246 41 20378 125

91246 22 20397 73

101246 8 20411 71

111246 5 20414 73

121246 2 20417 33

72

www.manaraa.com

6.3 Explanation of Results

We have demonstrated 6 different feature selection algorithms, and χ2 and NGL

algorithms have out-performed all other algorithms. These results seem to be in

agreement with Kotcz, Prabakarmurthi, Kalita, and Yang & Pedersen’s results, as

they also found Chi-Squared to be very effective [3, 11]. Dasgupta et al. [5] describe

that “it is often difficult to claim more than a vague intuitive understanding of why

a particular feature selection algorithm performs well when it does” [5].

Kotcz, Prabakarmurthi, and Kalita have also shown that, “by reducing the

feature space, the accuracy of a classification method can be increased and, even

when only very few of the original features are kept, good accuracy can maintained”

[11]. Our results agree. We have shown that by keeping only the informative features,

and removing all other non-informative features, we can either improve results, TP,

or can get same results by reducing the feature set by a very large degree. As can be

seen from the results that even after removing many features, we were still able to

get TP that were close to the optimal.

Conducting one sample T-Test on precision values, with hypothetical mean of

0.9483, we got P value of 0.0362, and this indicates that the difference is statistically

significant.

73

www.manaraa.com

CHAPTER 7

CONCLUSION AND FUTURE WORK

Text categorization is very important, but we believe, the problem of feature

selection is as much, or more important than text-categorization. In this thesis, we

discussed many important topics ranging from collecting data, to organizing data

and ultimately using the organized data to efficiently conduct tests using the feature

selection algorithms.

In chapter 2, we showed how we used a MySQL database to efficiently store

our collection of documents. We would like to mention again that using a MySQL

database to store data was a really good decision, as not only it made implementation

easier for us, but it was also much more efficient than using text files. MySQL also

has the ability to index data, which can help retrieve and update data speedily. In

the same chapter, we described what setup was used for the database, and described

the structure of each table in the database. Then we explained the details of the b8

lexer, and described how we used the b8 lexer to create bag of words, or BOW, to

help us train and test data.

Chapter 3, even though a short one, is the core of this thesis. In chapter 3,

we described how the counting of the training documents was done using BOW. We

explained what the A, B, C, D values were, and how we calculated each of those

values using our training data. We also explained why these A, B, C, D values are

important and very much needed for the feature selection algorithms.

In chapter 4, we first showed the important of feature selection algorithms,

and then we gave explanation on the following feature selection methods: Document

74

www.manaraa.com

Frequency, Information Gain, Mutual Information, Chi Square, NGL (Ng-Goh-Low)

Coefficient, and GSS (Galavotti-Sebastiani-Simi) Coefficient.

In chapter 5, we implemented the above mentioned feature selection algorithms.

In this chapter, we gave code listings on how each of the algorithms were implemented.

Results are shown in chapter 6. We showed what feature selection algorithm

turned out to be the best algorithm for our case. We then went on to show that

even after removing features, and in some cases more than 90%, we were still able to

maintain over 99% of TP in our results. This study has shown how powerful feature

selection algorithms can be.

We have shown some dramatic improvements using our results. And we believe

feature selection methods should be researched further, on Very Large Scale Data.

The number of training and test documents used in this thesis are very small compared

to what is out there on the Internet. Moreover, in this thesis, only 9 categories were

used. In the real world, hundreds of categories exist. To have a large-scale categorizer,

powerful feature selection algorithm(s) would have to be developed. And we believe,

this area could be researched and tested on further.

Another area that we and George Forman believe is that of “hierarchical cate-

gories”. Forman says the following:

Hierarchy is among the most powerful of organizing abstractions. Hierar-

chical classification includes a variety of tasks where the goal is to classify

items into a set of classes that are arranged into a tree or directed acyclic

graph.

[7]

75

www.manaraa.com

and Forman believes,

The problem is cast as a multi-label task to select multiple interior nodes,

optionally including all super-classes along the paths to the root.

[7]

We strongly believe, conducting further research on the topics mentioned above

would be very helpful, as it can ultimately help categorize all documents in the world.

76

www.manaraa.com

BIBLIOGRAPHY

[1] S. Li, R. Xia, C. Zong, and C.-R. Huang, “A framework of feature selection

methods for text categorization.,” in ACL/AFNLP’09, pp. 692–700, 2009.

[2] W. Shang, H. Huang, H. Zhu, Y. Lin, Y. Qu, and Z. Wang, “A novel feature

selection algorithm for text categorization,” Expert Systems with Applications,

vol. 33, no. 1, pp. 1–5, 2007.

[3] Y. Yang and J. O. Pedersen, “A comparative study on feature selection in text

categorization,” pp. 412–420, Morgan Kaufmann Publishers, 1997.

[4] M. Z. Fadi Thabtah, Mohammad Ali H. Eljinini and W. M. Hadi, “Nave bayesian

based on chi square to categorize arabic data,” Communications of the IBIMA,

vol. 10, no. 20, pp. 158–163, 2009.

[5] A. Dasgupta, P. Drineas, B. Harb, V. Josifovski, and M. W. Mahoney, “Fea-

ture selection methods for text classification,” Proceedings of the 13th ACM

SIGKDD international conference on Knowledge discovery and data mining KDD

07, vol. 21, no. 2, p. 230, 2007.

[6] G. Forman, I. Guyon, and A. Elisseeff, “An extensive empirical study of feature

selection metrics for text classification,” Journal of Machine Learning Research,

vol. 3, pp. 1289–1305, 2003.

[7] G. Forman, “An extensive empirical study of feature selection metrics for text

classification,” J. Mach. Learn. Res., vol. 3, pp. 1289–1305, March 2003.

77

www.manaraa.com

[8] M. Porter, “The porter stemming algorithm.” http://tartarus.org/martin/

PorterStemmer/, 2006.

[9] D. Fragoudis, D. Meretakis, and S. Likothanassis aff1n3, “Best terms: an efficient

feature-selection algorithm for text categorization,” Knowl. Inf. Syst., vol. 8,

no. 1, pp. 16–33, 2005.

[10] M. Rogati and Y. Yang, “High-performing feature selection for text classifica-

tion,” pp. 659–661, 2002.

[11] A. Kolcz, V. Prabakarmurthi, J. Kalita, and P. Inc, “Summarization as feature

selection for text categorization,” 2001.

[12] R. Mukras, N. Wiratunga, R. Lothian, S. Chakraborti, and D. Harper, “In-

formation gain feature selection for ordinal text classification using probability

re-distribution.”

[13] G. Uchyigit and M. Ma, Personalization techniques and recommender systems,

p. 310. Series in machine perception and artificial intelligence, World Scientific,

2008.

78

www.manaraa.com

VITA

Graduate College
University of Nevada, Las Vegas

Kandarp Dave

Degrees:
Bachelor of Science, Computer Science, 2009
University of Nevada, Las Vegas

Thesis Title: Study of Feature Selection Algorithms for Text-Categorization

Thesis Examination Committee:
Chairperson, Dr. Kazem Taghva, Ph.D.
Committee Member, Dr. Ajoy K. Datta, Ph.D.
Committee Member, Dr. Laxmi P. Gewali, Ph.D.
Graduate College Representative, Dr. Muthukumar Venkatesan, Ph.D.

79

	Study of feature selection algorithms for text-categorization
	Repository Citation

	tmp.1346266846.pdf.sgKua

